Quadrature Rules With an Even Number of Multiple Nodes and a Maximal Trigonometric Degree of Exactness

被引:0
作者
Tomovic, Tatjana V. [1 ]
Stanic, Marija P. [1 ]
机构
[1] Univ Kragujevac, Fac Sci, Dept Math & Informat, Kragujevac, Serbia
关键词
Quadrature Rules; Trigonometric Degree; FORMULAS;
D O I
10.2298/FIL1510239T
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is devoted to the interpolatory quadrature rules with an even number of multiple nodes, which have the maximal trigonometric degree of exactness. For constructing of such quadrature rules we introduce and consider the so-called s- and sigma-orthogonal trigonometric polynomials. We present a numerical method for construction of mentioned quadrature rules. Some numerical examples are also included.
引用
收藏
页码:2239 / 2255
页数:17
相关论文
共 15 条
[1]  
[Anonymous], 2000, CLASSICS APPL MATH
[2]  
Cruz-Barroso R, 2005, ANN MATH INFORM, V32, P5
[3]   On bi-orthogonal systems of trigonometric functions and quadrature formulas for periodic integrands [J].
Cruz-Barroso, Ruyman ;
Gonzalez-Vera, Pablo ;
NjaStad, Olav .
NUMERICAL ALGORITHMS, 2007, 44 (04) :309-333
[4]  
DeVore Ronald A., 1993, Constructive Approximation, V303
[5]   QUADRATURE-FORMULAS WITH FREE NODES FOR PERIODIC-FUNCTIONS [J].
DRYANOV, DP .
NUMERISCHE MATHEMATIK, 1994, 67 (04) :441-464
[6]   On trigonometric and paratrigonometric Hermite interpolation [J].
Du, JY ;
Han, HL ;
Jin, GX .
JOURNAL OF APPROXIMATION THEORY, 2004, 131 (01) :74-99
[7]  
Engels H, 1980, NUMERICAL QUADRATURE
[8]   S-orthogonality and construction of Gauss-Turan-type quadrature formulae [J].
Gautschi, W ;
Milovanovic, GV .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1997, 86 (01) :205-218
[9]  
Ghizzeti A., 1980, QUADRATURE FORMULAE
[10]  
Milovanovic G. V., 1994, Topics in polynomials: Extremal problems, Inequalities, Zeros