Tradeoff in simultaneous quantum-limited phase and loss estimation in interferometry

被引:113
作者
Crowley, Philip J. D. [1 ]
Datta, Animesh [1 ]
Barbieri, Marco [1 ]
Walmsley, I. A. [1 ]
机构
[1] Univ Oxford, Dept Phys, Clarendon Lab, Oxford OX1 3PU, England
来源
PHYSICAL REVIEW A | 2014年 / 89卷 / 02期
基金
英国工程与自然科学研究理事会;
关键词
OBSERVABLES; METROLOGY; CHANNELS; GEOMETRY; STATES;
D O I
10.1103/PhysRevA.89.023845
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Interferometry with quantum light is known to provide enhanced precision for estimating a single phase. However, depending on the parameters involved, the quantum limit for the simultaneous estimation of multiple parameters may not be attainable, leading to tradeoffs in the attainable precisions. Here we study the simultaneous estimation of two parameters related to optical interferometry: phase and loss, using a fixed number of photons. We derive a tradeoff in the estimation of these two parameters which shows that, in contrast to single-parameter estimation, it is impossible to design a strategy saturating the quantum Cramer-Rao bound for loss and phase estimation in a single setup simultaneously. We design optimal quantum states with a fixed number of photons achieving the best possible simultaneous precisions. Our results reveal general features about concurrently estimating Hamiltonian and dissipative parameters and have implications for sophisticated sensing scenarios such as quantum imaging.
引用
收藏
页数:9
相关论文
共 50 条
[41]   Maximal quantum Fisher information for phase estimation without initial parity [J].
Yu, Xu ;
Zhao, Xiang ;
Shen, Luyi ;
Shao, Yanyan ;
Liu, Jing ;
Wang, Xiaoguang .
OPTICS EXPRESS, 2018, 26 (13) :16292-16302
[42]   Continuous-variable Quantum Phase Estimation based on Machine Learning [J].
Xiao, Tailong ;
Huang, Jingzheng ;
Fan, Jianping ;
Zeng, Guihua .
SCIENTIFIC REPORTS, 2019, 9 (1)
[43]   Optimized probing states for qubit phase estimation with general quantum noise [J].
Chapeau-Blondeau, Francois .
PHYSICAL REVIEW A, 2015, 91 (05)
[44]   Unraveling quantum phase estimation: exploring the impact of multi-photon interference on the quantum Fisher information [J].
Ma, A. ;
Magnoni, A. G. ;
Larotonda, M. A. ;
Knoll, L. T. .
QUANTUM SCIENCE AND TECHNOLOGY, 2025, 10 (03)
[45]   Hybrid Precoder Design for Angle-of-Departure Estimation With Limited-Resolution Phase Shifters [J].
Huang, Huiping ;
Keskin, Musa Furkan ;
Wymeersch, Henk ;
Cai, Xuesong ;
Wu, Linlong ;
Thunberg, Johan ;
Tufvesson, Fredrik .
IEEE TRANSACTIONS ON COMMUNICATIONS, 2025, 73 (06) :4439-4453
[46]   Quantum-noise-limited sensitivity of an interferometer using a phase generated carrier demodulation scheme [J].
Tayag, TJ .
OPTICAL ENGINEERING, 2002, 41 (02) :276-277
[47]   Pauli limited d-wave superconductors: quantum breached pair phase and thermal transitions [J].
Karmakar, Madhuparna .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2020, 32 (40)
[48]   Adaptive Optical Phase Estimation Using Time-Symmetric Quantum Smoothing [J].
Wheatley, T. A. ;
Berry, D. W. ;
Yonezawa, H. ;
Nakane, D. ;
Arao, H. ;
Pope, D. T. ;
Ralph, T. C. ;
Wiseman, H. M. ;
Furusawa, A. ;
Huntington, E. H. .
PHYSICAL REVIEW LETTERS, 2010, 104 (09)
[49]   Phase estimation at the quantum Cramer-Rao bound via parity detection [J].
Seshadreesan, Kaushik P. ;
Kim, Sejong ;
Dowling, Jonathan P. ;
Lee, Hwang .
PHYSICAL REVIEW A, 2013, 87 (04)
[50]   Usefulness of an enhanced Kitaev phase-estimation algorithm in quantum metrology and computation [J].
Kaftal, Tomasz ;
Demkowicz-Dobrzanski, Rafal .
PHYSICAL REVIEW A, 2014, 90 (06)