Tradeoff in simultaneous quantum-limited phase and loss estimation in interferometry

被引:113
作者
Crowley, Philip J. D. [1 ]
Datta, Animesh [1 ]
Barbieri, Marco [1 ]
Walmsley, I. A. [1 ]
机构
[1] Univ Oxford, Dept Phys, Clarendon Lab, Oxford OX1 3PU, England
来源
PHYSICAL REVIEW A | 2014年 / 89卷 / 02期
基金
英国工程与自然科学研究理事会;
关键词
OBSERVABLES; METROLOGY; CHANNELS; GEOMETRY; STATES;
D O I
10.1103/PhysRevA.89.023845
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Interferometry with quantum light is known to provide enhanced precision for estimating a single phase. However, depending on the parameters involved, the quantum limit for the simultaneous estimation of multiple parameters may not be attainable, leading to tradeoffs in the attainable precisions. Here we study the simultaneous estimation of two parameters related to optical interferometry: phase and loss, using a fixed number of photons. We derive a tradeoff in the estimation of these two parameters which shows that, in contrast to single-parameter estimation, it is impossible to design a strategy saturating the quantum Cramer-Rao bound for loss and phase estimation in a single setup simultaneously. We design optimal quantum states with a fixed number of photons achieving the best possible simultaneous precisions. Our results reveal general features about concurrently estimating Hamiltonian and dissipative parameters and have implications for sophisticated sensing scenarios such as quantum imaging.
引用
收藏
页数:9
相关论文
共 50 条
[31]   Demonstrating Heisenberg-limited unambiguous phase estimation without adaptive measurements [J].
Higgins, B. L. ;
Berry, D. W. ;
Bartlett, S. D. ;
Mitchell, M. W. ;
Wiseman, H. M. ;
Pryde, G. J. .
NEW JOURNAL OF PHYSICS, 2009, 11
[32]   Distributed phase estimation and networked quantum sensors with W-type quantum probes [J].
Maleki, Yusef ;
Zubairy, M. Suhail .
PHYSICAL REVIEW A, 2022, 105 (03)
[33]   Experimental quantum-enhanced estimation of a lossy phase shift [J].
Kacprowicz, M. ;
Demkowicz-Dobrzanski, R. ;
Wasilewski, W. ;
Banaszek, K. ;
Walmsley, I. A. .
NATURE PHOTONICS, 2010, 4 (06) :357-360
[34]   Quantum phase estimation with a general binary-outcome measurement [J].
Zheng, H. L. ;
Ren, X. J. ;
Liu, P. ;
Jin, G. R. .
RESULTS IN PHYSICS, 2022, 43
[35]   Gaussian systems for quantum-enhanced multiple phase estimation [J].
Gagatsos, Christos N. ;
Branford, Dominic ;
Datta, Animesh .
PHYSICAL REVIEW A, 2016, 94 (04)
[36]   Supersensitive ancilla-based adaptive quantum phase estimation [J].
Larson, Walker ;
Saleh, Bahaa E. A. .
PHYSICAL REVIEW A, 2017, 96 (04)
[37]   Adaptive Phase Estimation with Squeezed Vacuum Approaching the Quantum Limit [J].
Rodriguez-Garcia, M. A. ;
Becerra, F. E. .
QUANTUM, 2024, 8
[38]   Quantum frequency combs and Hong-Ou-Mandel interferometry: the role of spectral phase coherence [J].
Lingaraju, Navin B. ;
Lu, Hsuan-Hao ;
Seshadri, Suparna ;
Imany, Poolad ;
Leaird, Daniel E. ;
Lukens, Joseph M. ;
Weiner, Andrew M. .
OPTICS EXPRESS, 2019, 27 (26) :38683-38697
[39]   Multiple-Phase Quantum Interferometry: Real and Apparent Gains of Measuring All the Phases Simultaneously [J].
Gorecki, Wojciech ;
Demkowicz-Dobrzanski, Rafal .
PHYSICAL REVIEW LETTERS, 2022, 128 (04)
[40]   Quantum signal processing for quantum phase estimation: Fourier transform versus maximum likelihood approaches [J].
Chapeau-Blondeau, Francois ;
Belin, Etienne .
ANNALS OF TELECOMMUNICATIONS, 2020, 75 (11-12) :641-653