Tradeoff in simultaneous quantum-limited phase and loss estimation in interferometry

被引:112
作者
Crowley, Philip J. D. [1 ]
Datta, Animesh [1 ]
Barbieri, Marco [1 ]
Walmsley, I. A. [1 ]
机构
[1] Univ Oxford, Dept Phys, Clarendon Lab, Oxford OX1 3PU, England
来源
PHYSICAL REVIEW A | 2014年 / 89卷 / 02期
基金
英国工程与自然科学研究理事会;
关键词
OBSERVABLES; METROLOGY; CHANNELS; GEOMETRY; STATES;
D O I
10.1103/PhysRevA.89.023845
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Interferometry with quantum light is known to provide enhanced precision for estimating a single phase. However, depending on the parameters involved, the quantum limit for the simultaneous estimation of multiple parameters may not be attainable, leading to tradeoffs in the attainable precisions. Here we study the simultaneous estimation of two parameters related to optical interferometry: phase and loss, using a fixed number of photons. We derive a tradeoff in the estimation of these two parameters which shows that, in contrast to single-parameter estimation, it is impossible to design a strategy saturating the quantum Cramer-Rao bound for loss and phase estimation in a single setup simultaneously. We design optimal quantum states with a fixed number of photons achieving the best possible simultaneous precisions. Our results reveal general features about concurrently estimating Hamiltonian and dissipative parameters and have implications for sophisticated sensing scenarios such as quantum imaging.
引用
收藏
页数:9
相关论文
共 50 条
[21]   Quantum interferometry with binary-outcome measurements in the presence of phase diffusion [J].
Feng, X. M. ;
Jin, G. R. ;
Yang, W. .
PHYSICAL REVIEW A, 2014, 90 (01)
[22]   Phase estimation without a priori phase knowledge in the presence of loss [J].
Kolodynski, Jan ;
Demkowicz-Dobrzanski, Rafal .
PHYSICAL REVIEW A, 2010, 82 (05)
[23]   Multiple phase estimation in quantum cloning machines [J].
Yao, Yao ;
Ge, Li ;
Xiao, Xing ;
Wang, Xiao-guang ;
Sun, Chang-pu .
PHYSICAL REVIEW A, 2014, 90 (02)
[24]   Full-Period Quantum Phase Estimation [J].
Liu, Li-Zheng ;
Fei, Yue-Yang ;
Mao, Yingqiu ;
Hu, Yi ;
Zhang, Rui ;
Yin, Xu-Fei ;
Jiang, Xiao ;
Li, Li ;
Liu, Nai-Le ;
Xu, Feihu ;
Chen, Yu-Ao ;
Pan, Jian-Wei .
PHYSICAL REVIEW LETTERS, 2023, 130 (12)
[25]   Phase retrieval from the phase-shift moire fringe patterns in simultaneous dual-wavelength interferometry [J].
Cheng, Jinlong ;
Gao, Zhishan ;
Bie, Shuyou ;
Dou, Yimeng ;
Ni, Ruihu ;
Yuan, Qun .
JOURNAL OF OPTICS, 2018, 20 (02)
[26]   Robustness of quantum-enhanced adaptive phase estimation [J].
Palittapongarnpim, Pantita ;
Sanders, Barry C. .
PHYSICAL REVIEW A, 2019, 100 (01)
[27]   Optimal quantum phase estimation in an atomic gyroscope based on a Bose-Hubbard model [J].
Shao, Lei ;
Li, Weiyao ;
Wang, Xiaoguang .
OPTICS EXPRESS, 2020, 28 (22) :32556-32571
[28]   OPTIMIZED QUBIT PHASE ESTIMATION IN NOISY QUANTUM CHANNELS [J].
Tesio, Enrico ;
Olivares, Stefano ;
Paris, Matteo G. A. .
INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2011, 9 :379-387
[29]   Influence of multiphoton events on the quantum enhanced phase estimation [J].
Zhang, Mingran ;
Huang, Long ;
Liu, Yang ;
Zhao, Wei ;
Wang, Weiqiang .
OPTICS EXPRESS, 2022, 30 (21) :37833-37845
[30]   Comparative Study of Three Bayesian Filtering Approaches for Phase Step Estimation in Optical Interferometry [J].
Madyastha, Venkatesh ;
Patil, Abhijit ;
Rastogi, Pramod .
INTERNATIONAL CONFERENCE ON ADVANCED PHASE MEASUREMENT METHODS IN OPTICS AN IMAGING, 2010, 1236 :345-+