Growing a Chemical Garden at the Air-Fluid Interface

被引:14
作者
Hussein, Salome [1 ,2 ]
Maselko, Jerzy [1 ]
Pantaleone, James T. [3 ]
机构
[1] Univ Alaska Anchorage, Dept Chem, Anchorage, AK 99508 USA
[2] Univ Auckland, Dept Phys, Auckland 1010, New Zealand
[3] Univ Alaska Anchorage, Dept Phys, Anchorage, AK 99508 USA
基金
美国国家科学基金会;
关键词
PATTERNS; INSTABILITY; DIFFUSION; LIQUIDS; GROWTH;
D O I
10.1021/acs.langmuir.5b04196
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Here we grow chemical gardens using a novel, quasi two-dimensional, experimental configuration. Buoyant calcium chloride solution is pumped onto the surface of sodium silicate solution. The solutions react to form a precipitation structure on the surface. Initially, an open channel forms that grows in a spiral. This transitions to radially spreading and branching fingers, which typically oscillate in transparency as they grow. The depth of the radial spreading, and the fractal dimension of the finger growth, are surprisingly robust, being insensitive to the pumping rate. The curvature of the channel membrane and the depth of the radially spreading solution can be explained in terms of the solution densities and the interfacial tension across the semipermeable membrane. These unusually beautiful structures provide new insights into the dynamics of precipitation structures and may lead to new technologies where structures are grown instead of assembled.
引用
收藏
页码:706 / 711
页数:6
相关论文
共 32 条
  • [1] From Chemical Gardens to Chemobrionics
    Barge, Laura M.
    Cardoso, Silvana S. S.
    Cartwright, Julyan H. E.
    Cooper, Geoffrey J. T.
    Cronin, Leroy
    De Wit, Anne
    Doloboff, Ivria J.
    Escribano, Bruno
    Goldstein, Raymond E.
    Haudin, Florence
    Jones, David E. H.
    Mackay, Alan L.
    Maselko, Jerzy
    Pagano, Jason J.
    Pantaleone, J.
    Russell, Michael J.
    Ignacio Sainz-Diaz, C.
    Steinbock, Oliver
    Stone, David A.
    Tanimoto, Yoshifumi
    Thomas, Noreen L.
    [J]. CHEMICAL REVIEWS, 2015, 115 (16) : 8652 - 8703
  • [2] Growing Inorganic Membranes in Microfluidic Devices: Chemical Gardens Reduced to Linear Walls
    Batista, Bruno C.
    Steinbock, Oliver
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2015, 119 (48) : 27045 - 27052
  • [3] Mechanics of pendant drops and axisymmetric membranes
    Carvajal, Daniel
    Laprade, Evan J.
    Henderson, Kevin J.
    Shull, Kenneth R.
    [J]. SOFT MATTER, 2011, 7 (22) : 10508 - 10519
  • [4] Solubility and structure of calcium silicate hydrate
    Chen, JJ
    Thomas, JJ
    Taylor, HFW
    Jennings, HM
    [J]. CEMENT AND CONCRETE RESEARCH, 2004, 34 (09) : 1499 - 1519
  • [5] Propagating Fronts and Morphological Instabilities in a Precipitation Reaction
    Duzs, Brigitta
    Lagzi, Istvan
    Szalai, Istvan
    [J]. LANGMUIR, 2014, 30 (19) : 5460 - 5465
  • [6] Gennes P.-G., 2004, Capillarity and wetting phenomena: Drops, bubbles, pearls, waves
  • [7] Hastings H., 1993, FRACTALS USERS GUIDE
  • [8] Patterns due to an interplay between viscous and precipitation-driven fingering
    Haudin, F.
    De Wit, A.
    [J]. PHYSICS OF FLUIDS, 2015, 27 (11)
  • [9] Direct and Reverse Chemical Garden Patterns Grown upon Injection in Confined Geometries
    Haudin, Florence
    Cartwright, Julyan H. E.
    De Witt, A.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2015, 119 (27) : 15067 - 15076
  • [10] Genericity of confined chemical garden patterns with regard to changes in the reactants
    Haudin, Florence
    Brasiliense, V.
    Cartwright, Julyan H. E.
    Brau, Fabian
    De Wit, A.
    [J]. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2015, 17 (19) : 12804 - 12811