Existence of solutions for a damped nonlinear impulsive problem with Dirichlet boundary conditions

被引:6
作者
Zhang, Dan [1 ]
Dai, Binxiang [2 ]
Chen, Yuming [3 ]
机构
[1] Hunan Univ Sci & Engn, Dept Math, Inst Computat Math, Youzhou 425100, Hunan, Peoples R China
[2] Cent S Univ, Dept Math, Changsha 410075, Hunan, Peoples R China
[3] Wilfrid Laurier Univ, Dept Math, Waterloo, ON N2L 3C5, Canada
基金
中国国家自然科学基金;
关键词
impulsive; critical point theory; Dirichlet boundary condition; VARIATIONAL-METHODS; DIFFERENTIAL-EQUATIONS; MULTIPLICITY;
D O I
10.1002/mma.2921
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the existence of solutions for second-order nonlinear damped impulsive differential equations with Dirichlet boundary condition. By critical point theory, we obtain some existence theorems of solutions for the nonlinear problem. We extend and improve some recent results. Copyright (c) 2013 John Wiley & Sons, Ltd.
引用
收藏
页码:1538 / 1552
页数:15
相关论文
共 25 条
[1]   An application of variational method to a class of Dirichlet boundary value problems with impulsive effects [J].
Bai, Liang ;
Dai, Binxiang .
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2011, 348 (09) :2607-2624
[2]   An application of variational method to second-order impulsive differential equation on the half-line [J].
Chen, Haibo ;
Sun, Juntao .
APPLIED MATHEMATICS AND COMPUTATION, 2010, 217 (05) :1863-1869
[3]   Lagrangian for the convection-diffusion equation [J].
Cresson, Jacky ;
Greff, Isabelle ;
Inizan, Pierre .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2012, 35 (15) :1885-1895
[4]  
Mawhin J., 1989, CRITICAL POINT THEOR
[5]   Variational formulation of a damped Dirichlet impulsive problem [J].
Nieto, Juan J. .
APPLIED MATHEMATICS LETTERS, 2010, 23 (08) :940-942
[6]   Variational approach to impulsive differential equations [J].
Nieto, Juan J. ;
O'Regan, Donal .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2009, 10 (02) :680-690
[7]  
Rabinowitz, 2002, HDB DYNAMICAL SYST A, V1, P1091, DOI DOI 10.1016/S1874-575X(02)80016-9
[8]  
Rabinowitz PH, 1986, MINIMAX METHODS CRIT
[9]  
Ruiz GM, 2012, ABSTR APPL ANAL
[10]   Existence of Solutions for Sturm-Liouville Boundary Value Problem of Impulsive Differential Equations [J].
Sun, Hong-Rui ;
Li, Ya-Ning ;
Nieto, Juan J. ;
Tang, Qing .
ABSTRACT AND APPLIED ANALYSIS, 2012,