A 2D implicit time-marching algorithm for shallow water models based on the generalized wave continuity equation

被引:4
作者
Dresback, KM [1 ]
Kolar, RL [1 ]
Dietrich, JC [1 ]
机构
[1] Univ Oklahoma, Sch Civil Engn & Environm Sci, Norman, OK 73019 USA
关键词
shallow water equations; finite elements; generalized wave continuity equation; implicit time-marching; parallel computing;
D O I
10.1002/fld.697
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper builds upon earlier work that developed and evaluated a 1D predictor-corrector time-marching algorithm for wave equation models and extends it to 2D. Typically, the generalized wave continuity equation (GWCE) utilizes a three time-level semi-implicit scheme centred at k, and the momentum equation uses a two time-level scheme centred at k + 1/2. It has been shown that in highly non-linear applications, the algorithm becomes unstable at even moderate Courant numbers. This work implements and analyses an implicit treatment of the non-linear terms through the use of an iterative time-marching algorithm in the two-dimensional framework. Stability results show at least an eight-fold increase in the maximum time step, depending on the domain. Studies also examined the sensitivity of the G parameter (a numerical weighting parameter in the GWCE) with results showing the greatest increase in stability occurs when 1less than or equal toG/tau(max)less than or equal to10, a range that coincides with the recommended range to minimize errors. Convergence studies indicate an increase in temporal accuracy from first order to second order, while overall error is less than the original algorithm, even at higher time steps. Finally, a parallel implementation of the new algorithm shows that it scales well. Copyright (C) 2004 John Wiley Sons, Ltd.
引用
收藏
页码:253 / 274
页数:22
相关论文
共 30 条
[1]  
[Anonymous], 1995, CONTINENTAL SHELF SC
[2]  
Blain CA, 1998, INT J NUMER METH FL, V26, P369, DOI 10.1002/(SICI)1097-0363(19980228)26:4<369::AID-FLD624>3.0.CO
[3]  
2-0
[4]   THE INFLUENCE OF DOMAIN SIZE ON THE RESPONSE CHARACTERISTICS OF A HURRICANE STORM-SURGE MODEL [J].
BLAIN, CA ;
WESTERINK, JJ ;
LUETTICH, RA .
JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 1994, 99 (C9) :18467-18479
[5]  
CHIPPADA S, 1996, COMPUTATIONAL METHOD, V2, P63
[6]  
Dawson C, 2000, PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON PARALLEL AND DISTRIBUTED PROCESSING TECHNIQUES AND APPLICATIONS, VOLS I-V, P21
[7]   An implicit time-marching algorithm for shallow water models based on the generalized wave continuity equation [J].
Dresback, KM ;
Kolar, RL .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2001, 36 (08) :925-945
[8]  
EE JK, 1986, 1009 USDOI US GEOL S
[9]   Time-Stepping Schemes for Finite Element Tidal Model Computations [J].
Gray, William G. ;
Lynch, Daniel R. .
ADVANCES IN WATER RESOURCES, 1977, 1 (02) :83-95
[10]  
Hagen SC, 2001, INT J NUMER METH FL, V35, P669, DOI 10.1002/1097-0363(20010330)35:6<669::AID-FLD108>3.0.CO