Natural convection during melting in vertical finned tube latent thermal energy storage systems

被引:120
|
作者
Vogel, J. [1 ]
Johnson, M. [1 ]
机构
[1] German Aerosp Ctr DLR, Pfaffenwaldring 38-40, D-70569 Stuttgart, Germany
关键词
Heat transfer; Phase change material (PCM); Finned tube heat exchanger; Computational fluid dynamics (CFD); Convective enhancement factor; PHASE-CHANGE; PERFORMANCE ENHANCEMENT; HEAT SINK; FINS; SOLIDIFICATION; DESIGN;
D O I
10.1016/j.apenergy.2019.04.011
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Natural convection can have a major impact on the melting process during charging in a latent heat storage system. Heat transfer enhancement by natural convection depends strongly on the dimensions, material properties and boundary conditions of the storage system. In complex geometries, such as shell-and-tube storage systems with extended fins, a good approximation of the impact of natural convection on the melting process is very difficult. There are no correlations for such geometries, and simulations of these storage systems require extensive computational effort. In the present work, we analyzed the impact of natural convection in four vertical shell-and-tube extended fin systems with a common tube height. To investigate the influence of the tube height, one of the fins was additionally modeled with two further tube heights. We scaled the resulting liquid fraction evolutions into a dimensionless form and used a convective enhancement factor to assess the strength of natural convection. A linear fit function for the mean convective enhancement factor was derived to estimate the melting process considering natural convection. With it, natural convection may be incorporated into the design process of storage systems to optimize the charging time. The results indicate a negligible impact of natural convection in fins with a small tube spacing and a high fin fraction. There is a considerable impact from natural convection in fins designed with a large tube spacing and a low fin fraction. However, large fin heights lead to decreased heat transfer enhancement by natural convection.
引用
收藏
页码:38 / 52
页数:15
相关论文
共 50 条
  • [31] Melting performance analysis of phase change materials in different finned thermal energy storage
    Zhang, Shengqi
    Pu, Liang
    Xu, Lingling
    Liu, Ran
    Li, Yanzhong
    APPLIED THERMAL ENGINEERING, 2020, 176 (176)
  • [32] Investigation on the thermal performance of a multi-tube finned latent heat thermal storage pool
    Huang, Yongping
    Song, Liping
    Wu, Suchen
    Liu, Xiangdong
    APPLIED THERMAL ENGINEERING, 2022, 200
  • [33] Melting enhancement in triplex-tube latent thermal energy storage system using nanoparticles-fins combination
    Mahdi, Jasim M.
    Nsofor, Emmanuel C.
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2017, 109 : 417 - 427
  • [34] Numerical analysis of the performance enhancement of a latent heat storage shell and tube unit using finned tubes during melting and solidification
    Dekhil, Mohamed Amine
    Tala, Jules Voguelin Simo
    Bulliard-Sauret, Odin
    Bougeard, Daniel
    APPLIED THERMAL ENGINEERING, 2021, 192
  • [35] Effect of natural convection on melting performance of eccentric horizontal shell and tube latent heat storage unit
    Cao, Xiaoling
    Yuan, Yanping
    Xiang, Bo
    Haghighat, Fariborz
    SUSTAINABLE CITIES AND SOCIETY, 2018, 38 : 571 - 581
  • [36] Study of Turbulent Natural Convection in Vertical Storage Tubes for Supercritical Thermal Energy Storage
    Lakeh, Reza Baghaei
    Lavine, Adrienne S.
    Kavehpour, H. Pirouz
    Wirz, Richard E.
    NUMERICAL HEAT TRANSFER PART A-APPLICATIONS, 2015, 67 (02) : 119 - 139
  • [37] Investigation of the effect of geometric and operating parameters on thermal behavior of vertical shell-and-tube latent heat energy storage systems
    Seddegh, Saeid
    Wang, Xiaolin
    Joybari, Mahmood Mastani
    Haghighat, Fariborz
    ENERGY, 2017, 137 : 69 - 82
  • [38] Effect of fin number on the melting phase change in a horizontal finned shell-and-tube thermal energy storage unit
    Yang, Xiaohu
    Wang, Xinyi
    Liu, Zhan
    Luo, Xilian
    Yan, Jinyue
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2022, 236
  • [39] Optimization on the melting performance of triplex-layer PCMs in a horizontal finned shell and tube thermal energy storage unit
    Xu, Hongtao
    Wang, Ning
    Zhang, Chenyu
    Qu, Zhiguo
    Cao, Meng
    APPLIED THERMAL ENGINEERING, 2020, 176
  • [40] Experimental investigation of the effect of perforated fins on thermal performance enhancement of vertical shell and tube latent heat energy storage systems
    Karami, Ramin
    Kamkari, Babak
    ENERGY CONVERSION AND MANAGEMENT, 2020, 210