Lasing characteristics of self-formed quantum-dot lasers with multistacked dot layer

被引:52
作者
Shoji, H
Nakata, Y
Mukai, K
Sugiyama, Y
Sugawara, M
Yokoyama, N
Ishikawa, H
机构
[1] Fujitsu Laboratories Ltd.
关键词
crystal growth; lasers; measurement; physics; quantum-well devices; semiconductor lasers; stimulated emission; ROOM-TEMPERATURE; THRESHOLD; PHOTOLUMINESCENCE; EMISSION; INGAAS; NM;
D O I
10.1109/2944.605654
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Room-temperature continuous-wave (CW) operation at the ground state has been achieved in self-formed quantum-dot lasers with multistacked dot layer, By systematic investigation, discontinuous shifts of lasing wavelength from the high-order subbands to the ground state are clearly demonstrated for the first time by varying the number of dot layers and the cavity loss, Lasers oscillating at different subbands exhibit different behaviors against temperature both in the spectral characteristics and in the threshold currents, which are strongly related to emission efficiency of quantum dots and thermal excitation of carriers to higher order subbands, High characteristic temperature over 300 ii has been achieved in a laser with high-reflection coating on both facets in the temperature range 60-200 K. Future prospects of improvement in the laser characteristics are also discussed.
引用
收藏
页码:188 / 195
页数:8
相关论文
共 50 条
[31]   Transient behaviors of current-injection quantum-dot microdisk lasers [J].
Mao, Ming-Hua ;
Chien, Hao-Che .
OPTICS EXPRESS, 2012, 20 (03) :3302-3310
[32]   Quantum-Dot Vertical-Cavity Surface-Emitting Lasers [J].
D. Bimberg ;
N. N. Ledentsov ;
J. A. Lott .
MRS Bulletin, 2002, 27 :531-537
[33]   Infrared Colloidal Quantum Dot Lasers [J].
Taghipour, Nima ;
Konstantatos, Gerasimos .
ADVANCED OPTICAL MATERIALS, 2025,
[34]   Dynamic characteristics of photonic crystal quantum dot lasers [J].
Banihashemi, Mehdi ;
Ahmadi, Vahid .
APPLIED OPTICS, 2014, 53 (12) :2595-2601
[35]   Quantum dot lasers with controllable spectral and modal characteristics [J].
Zhukov, A. E. ;
Maximov, M. V. ;
Gordeev, N. Yu ;
Savelyev, A. V. ;
Livshits, D. A. ;
Kovsh, A. R. .
SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2011, 26 (01)
[36]   Random Population Model for Self Pulsation in Single-Section Quantum-Dot Lasers [J].
Wang, Yao ;
Mao, Yiwei ;
Chen, Yanghua ;
Wang, Xiaolei ;
Su, Hui .
IEEE PHOTONICS TECHNOLOGY LETTERS, 2013, 25 (04) :389-392
[37]   Simulation of output power and optical gain characteristics of self-assembled quantum-dot lasers: Effects of homogeneous and inhomogeneous broadening, quantum dot coverage and phonon bottleneck [J].
Nahri, Davoud Ghodsi .
OPTICS AND LASER TECHNOLOGY, 2012, 44 (08) :2436-2442
[38]   Tunable InAs quantum-dot lasers grown on (100) InP [J].
Allen, CN ;
Poole, PJ ;
Marshall, P ;
Raymond, S ;
Fafard, S .
MICROELECTRONICS JOURNAL, 2003, 34 (5-8) :415-417
[39]   Optical injection enables coherence resonance in quantum-dot lasers [J].
Ziemann, D. ;
Aust, R. ;
Lingnau, B. ;
Schoell, E. ;
Luedge, K. .
EPL, 2013, 103 (01)
[40]   Temperature sensitivity of InGaAs quantum-dot lasers grown by MOCVD [J].
Kim, NH ;
Park, JH ;
Mawst, LJ ;
Kuech, TF ;
Kanskar, M .
IEEE PHOTONICS TECHNOLOGY LETTERS, 2006, 18 (5-8) :989-991