Lasing characteristics of self-formed quantum-dot lasers with multistacked dot layer

被引:52
作者
Shoji, H
Nakata, Y
Mukai, K
Sugiyama, Y
Sugawara, M
Yokoyama, N
Ishikawa, H
机构
[1] Fujitsu Laboratories Ltd.
关键词
crystal growth; lasers; measurement; physics; quantum-well devices; semiconductor lasers; stimulated emission; ROOM-TEMPERATURE; THRESHOLD; PHOTOLUMINESCENCE; EMISSION; INGAAS; NM;
D O I
10.1109/2944.605654
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Room-temperature continuous-wave (CW) operation at the ground state has been achieved in self-formed quantum-dot lasers with multistacked dot layer, By systematic investigation, discontinuous shifts of lasing wavelength from the high-order subbands to the ground state are clearly demonstrated for the first time by varying the number of dot layers and the cavity loss, Lasers oscillating at different subbands exhibit different behaviors against temperature both in the spectral characteristics and in the threshold currents, which are strongly related to emission efficiency of quantum dots and thermal excitation of carriers to higher order subbands, High characteristic temperature over 300 ii has been achieved in a laser with high-reflection coating on both facets in the temperature range 60-200 K. Future prospects of improvement in the laser characteristics are also discussed.
引用
收藏
页码:188 / 195
页数:8
相关论文
共 50 条
[21]   Differential gain and gain compression in quantum-dot lasers [J].
Fiore, Andrea ;
Markus, Alexander .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 2007, 43 (3-4) :287-294
[22]   On quantum-dot lasing at gain peak with linewidth enhancement factor αH=0 [J].
Chow, Weng W. ;
Zhang, Zeyu ;
Norman, Justin C. ;
Liu, Songtao ;
Bowers, John E. .
APL PHOTONICS, 2020, 5 (02)
[23]   High Speed Evanescent Quantum-Dot Lasers on Si [J].
Wan, Yating ;
Xiang, Chao ;
Guo, Joel ;
Koscica, Rosalyn ;
Kennedy, Mj ;
Selvidge, Jennifer ;
Zhang, Zeyu ;
Chang, Lin ;
Xie, Weiqiang ;
Huang, Duanni ;
Gossard, Arthur C. ;
Bowers, John E. .
LASER & PHOTONICS REVIEWS, 2021, 15 (08)
[24]   Many-body effects in quantum-dot lasers [J].
Schneider, HC ;
Chow, WW ;
Smowton, PM ;
Pearce, EJ ;
Koch, SW .
PHYSICS AND SIMULATION OF OPTOELECTRONIC DEVICES XI, 2003, 4986 :29-35
[25]   Compact ultrafast lasers based on quantum-dot structures [J].
Rafailov, E. U. ;
Cataluna, M. A. ;
Wilcox, K. ;
Zolotovskaya, S. A. .
QUANTUM SENSING AND NANOPHOTONIC DEVICES VI, 2009, 7222
[26]   InGaAs Quantum-Dot Micropillar Emitters: From Spontaneous Emission and Superradiance to Lasing [J].
Chow, W. W. ;
Kreinberg, S. ;
Wolters, J. ;
Schneider, C. ;
Gies, C. ;
Jahnke, F. ;
Hoefling, S. ;
Kamp, M. ;
Reitzenstein, S. .
2017 19TH INTERNATIONAL CONFERENCE ON TRANSPARENT OPTICAL NETWORKS (ICTON), 2017,
[27]   High performance 1.3 μm quantum-dot lasers [J].
Krebs, R ;
Klopf, F ;
Reithmaier, JP ;
Forchel, A .
JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS BRIEF COMMUNICATIONS & REVIEW PAPERS, 2002, 41 (2B) :1158-1161
[28]   Carrier distribution, gain, and lasing in 1.3-μm InAs-InGaAs quantum-dot lasers [J].
Dikshit, AA ;
Pikal, JM .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 2004, 40 (02) :105-112
[29]   Quantum-dot vertical-cavity surface-emitting lasers [J].
Bimberg, D ;
Ledentsov, NN ;
Lott, JA .
MRS BULLETIN, 2002, 27 (07) :531-537
[30]   Failure of the α factor in describing dynamical instabilities and chaos in quantum-dot lasers [J].
Lingnau, Benjamin ;
Luedge, Kathy ;
Chow, Weng W. ;
Schoell, Eckehard .
PHYSICAL REVIEW E, 2012, 86 (06)