Time-inhomogeneous fractional Poisson processes defined by the multistable subordinator

被引:9
作者
Beghin, Luisa [1 ]
Ricciuti, Costantino [1 ]
机构
[1] Univ Roma La Sapienza, Dipartimento Sci Stat, Ple A Moro 5, I-00185 Rome, Italy
关键词
Subordinators; time-inhomogeneous processes; multistable subordinators; Bernstein functions; fractional calculus; Mittag-Leffler distribution; RANDOM-WALKS;
D O I
10.1080/07362994.2018.1548970
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The space-fractional and the time-fractional Poisson processes are two well-known models of fractional evolution. They can be constructed as standard Poisson processes with the time variable replaced by a stable subordinator and its inverse, respectively. The aim of this paper is to study nonhomogeneous versions of such models, which can be defined by means of the so-called multistable subordinator (a jump process with nonstationary increments), denoted by . Firstly, we consider the Poisson process time-changed by H and we obtain its explicit distribution and governing equation. Then, by using the right-continuous inverse of H, we define an inhomogeneous analog of the time-fractional Poisson process.
引用
收藏
页码:171 / 188
页数:18
相关论文
共 28 条
[11]  
Kolokoltsov VN, 2011, DEGRUYTER STUD MATH, V38, P1
[12]   Time-changed Poisson processes [J].
Kumar, A. ;
Nane, Erkan ;
Vellaisamy, P. .
STATISTICS & PROBABILITY LETTERS, 2011, 81 (12) :1899-1910
[13]   Fractional normal inverse Gaussian diffusion [J].
Kumar, A. ;
Meerschaert, Mark M. ;
Vellaisamy, P. .
STATISTICS & PROBABILITY LETTERS, 2011, 81 (01) :146-152
[14]   On Two Multistable Extensions of Stable L,vy Motion and Their Semi-martingale Representations [J].
Le Guevel, Ronan ;
Vehel, Jacques Levy ;
Liu, Lining .
JOURNAL OF THEORETICAL PROBABILITY, 2015, 28 (03) :1125-1144
[15]   The fractional non-homogeneous Poisson process [J].
Leonenko, Nikolai ;
Scalas, Enrico ;
Trinh, Mailan .
STATISTICS & PROBABILITY LETTERS, 2017, 120 :147-156
[16]  
Maheshwari A., 2016, ARXIV160706016
[17]   The Fractional Poisson Process and the Inverse Stable Subordinator [J].
Meerschaert, Mark M. ;
Nane, Erkan ;
Vellaisamy, P. .
ELECTRONIC JOURNAL OF PROBABILITY, 2011, 16 :1600-1620
[18]   Limit theorems for continuous-time random walks with infinite mean waiting times [J].
Meerschaert, MM ;
Scheffler, HP .
JOURNAL OF APPLIED PROBABILITY, 2004, 41 (03) :623-638
[19]   The random walk's guide to anomalous diffusion: a fractional dynamics approach [J].
Metzler, R ;
Klafter, J .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2000, 339 (01) :1-77
[20]   Multifractional Poisson process, multistable subordinator and related limit theorems [J].
Molchanov, Ilya ;
Ralchenko, Kostiantyn .
STATISTICS & PROBABILITY LETTERS, 2015, 96 :95-101