Theory of photon condensation in a spatially varying electromagnetic field

被引:67
作者
Andolina, G. M. [1 ,2 ]
Pellegrino, F. M. D. [3 ,4 ]
Giovannetti, V [5 ,6 ]
MacDonald, A. H. [7 ]
Polini, M. [2 ,8 ,9 ]
机构
[1] NEST, Scuola Normale Super, I-56126 Pisa, Italy
[2] Ist Italiano Tecnol, Graphene Labs, Via Morego 30, I-16163 Genoa, Italy
[3] Univ Catania, Dipartimento Fis & Astron Ettore Majorana, Via S Sofia 64, I-95123 Catania, Italy
[4] Ist Nazl Fis Nucl, Sez Catania, I-95123 Catania, Italy
[5] NEST, Scuola Nonnale Super, I-56126 Pisa, Italy
[6] CNR, Ist Nanosci, I-56126 Pisa, Italy
[7] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA
[8] Univ Pisa, Dipartimento Fis, Largo Bruno Pontecorvo 3, I-56127 Pisa, Italy
[9] Univ Manchester, Sch Phys & Astron, Oxford Rd, Manchester M13 9PL, Lancs, England
基金
欧盟地平线“2020”;
关键词
SUPERRADIANT PHASE-TRANSITION; NO-GO THEOREM; CONDON DOMAINS; MAGNETIC DOMAINS; QUANTIZATION; ELECTRONS;
D O I
10.1103/PhysRevB.102.125137
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The realization of equilibrium superradiant quantum phases (photon condensates) in a spatially uniform quantum cavity field is forbidden by a "no-go" theorem stemming from gauge invariance. We here show that the no-go theorem does not apply to spatially varying quantum cavity fields. We find a criterion for its occurrence that depends solely on the static, nonlocal orbital magnetic susceptibility chi(orb)(q), of the electronic system (ES) evaluated at a cavity photon momentum hq. Only 3DESs satisfying the Condon inequality chi(orb)(q) > 1/(4 pi) can harbor photon condensation. For the experimentally relevant case of two-dimensional (2D) ESs embedded in quasi-2D cavities the criterion again involves chi(orb)(q) but also the vertical size of the cavity. We use these considerations to identify electronic properties that are ideal for photon condensation. Our theory is nonperturbative in the strength of electron-electron interaction and therefore applicable to strongly correlated ESs.
引用
收藏
页数:21
相关论文
共 83 条
  • [31] SUPERRADIANT PHASE-TRANSITION FOR MOLECULES IN A QUANTIZED RADIATION FIELD - DICKE MASER MODEL
    HEPP, K
    LIEB, EH
    [J]. ANNALS OF PHYSICS, 1973, 76 (02) : 360 - 404
  • [32] EQUILIBRIUM STATISTICAL MECHANICS OF MATTER INTERACTING WITH QUANTIZED RADIATION FIELD
    HEPP, K
    LIEB, EH
    [J]. PHYSICAL REVIEW A, 1973, 8 (05): : 2517 - 2525
  • [33] DE-HAAS-VAN-ALPHEN EFFECT AND SPECIFIC-HEAT OF AN ELECTRON-GAS
    HOLSTEIN, T
    NORTON, RE
    PINCUS, P
    [J]. PHYSICAL REVIEW B, 1973, 8 (06): : 2649 - 2656
  • [34] Ultrastrong-coupling phenomena beyond the Dicke model
    Jaako, Tuomas
    Xiang, Ze-Liang
    Jose Garcia-Ripoll, Juan
    Rabl, Peter
    [J]. PHYSICAL REVIEW A, 2016, 94 (03)
  • [35] QUANTIZATION OF ELECTROMAGNETIC-FIELDS IN CAVITIES AND SPONTANEOUS EMISSION
    KAKAZU, K
    KIM, YS
    [J]. PHYSICAL REVIEW A, 1994, 50 (02): : 1830 - 1839
  • [36] Manipulating quantum materials with quantum light (vol 99, 085116, 2019)
    Kiffner, Martin
    Coulthard, Jonathan R.
    Schlawin, Frank
    Ardavan, Arzhang
    Jaksch, Dieter
    [J]. PHYSICAL REVIEW B, 2019, 99 (09)
  • [37] Manipulating quantum materials with quantum light
    Kiffner, Martin
    Coulthard, Jonathan R.
    Schlawin, Frank
    Ardavan, Arzhang
    Jaksch, Dieter
    [J]. PHYSICAL REVIEW B, 2019, 99 (08)
  • [38] Introduction to the Dicke Model: From Equilibrium to Nonequilibrium, and Vice Versa
    Kirton, Peter
    Roses, Mor M.
    Keeling, Jonathan
    Dalla Torre, Emanuele G.
    [J]. ADVANCED QUANTUM TECHNOLOGIES, 2019, 2 (1-2)
  • [39] Nonlinear optics in the fractional quantum Hall regime
    Knuppel, Patrick
    Ravets, Sylvain
    Kroner, Martin
    Falt, Stefan
    Wegscheider, Werner
    Imamoglu, Atac
    [J]. NATURE, 2019, 572 (7767) : 91 - +
  • [40] Entanglement and the phase transition in single-mode superradiance
    Lambert, N
    Emary, C
    Brandes, T
    [J]. PHYSICAL REVIEW LETTERS, 2004, 92 (07)