Theory of photon condensation in a spatially varying electromagnetic field

被引:67
作者
Andolina, G. M. [1 ,2 ]
Pellegrino, F. M. D. [3 ,4 ]
Giovannetti, V [5 ,6 ]
MacDonald, A. H. [7 ]
Polini, M. [2 ,8 ,9 ]
机构
[1] NEST, Scuola Normale Super, I-56126 Pisa, Italy
[2] Ist Italiano Tecnol, Graphene Labs, Via Morego 30, I-16163 Genoa, Italy
[3] Univ Catania, Dipartimento Fis & Astron Ettore Majorana, Via S Sofia 64, I-95123 Catania, Italy
[4] Ist Nazl Fis Nucl, Sez Catania, I-95123 Catania, Italy
[5] NEST, Scuola Nonnale Super, I-56126 Pisa, Italy
[6] CNR, Ist Nanosci, I-56126 Pisa, Italy
[7] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA
[8] Univ Pisa, Dipartimento Fis, Largo Bruno Pontecorvo 3, I-56127 Pisa, Italy
[9] Univ Manchester, Sch Phys & Astron, Oxford Rd, Manchester M13 9PL, Lancs, England
基金
欧盟地平线“2020”;
关键词
SUPERRADIANT PHASE-TRANSITION; NO-GO THEOREM; CONDON DOMAINS; MAGNETIC DOMAINS; QUANTIZATION; ELECTRONS;
D O I
10.1103/PhysRevB.102.125137
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The realization of equilibrium superradiant quantum phases (photon condensates) in a spatially uniform quantum cavity field is forbidden by a "no-go" theorem stemming from gauge invariance. We here show that the no-go theorem does not apply to spatially varying quantum cavity fields. We find a criterion for its occurrence that depends solely on the static, nonlocal orbital magnetic susceptibility chi(orb)(q), of the electronic system (ES) evaluated at a cavity photon momentum hq. Only 3DESs satisfying the Condon inequality chi(orb)(q) > 1/(4 pi) can harbor photon condensation. For the experimentally relevant case of two-dimensional (2D) ESs embedded in quasi-2D cavities the criterion again involves chi(orb)(q) but also the vertical size of the cavity. We use these considerations to identify electronic properties that are ideal for photon condensation. Our theory is nonperturbative in the strength of electron-electron interaction and therefore applicable to strongly correlated ESs.
引用
收藏
页数:21
相关论文
共 83 条
  • [1] Drude weight, plasmon dispersion, and ac conductivity in doped graphene sheets
    Abedinpour, Saeed H.
    Vignale, G.
    Principi, A.
    Polini, Marco
    Tse, Wang-Kong
    MacDonald, A. H.
    [J]. PHYSICAL REVIEW B, 2011, 84 (04)
  • [2] Cavity superconductor-polaritons
    Allocca, Andrew A.
    Raines, Zachary M.
    Curtis, Jonathan B.
    Galitski, Victor M.
    [J]. PHYSICAL REVIEW B, 2019, 99 (02)
  • [3] Cavity quantum electrodynamics of strongly correlated electron systems: A no-go theorem for photon condensation
    Andolina, G. M.
    Pellegrino, F. M. D.
    Giovannetti, V
    MacDonald, A. H.
    Polini, M.
    [J]. PHYSICAL REVIEW B, 2019, 100 (12)
  • [4] Ashida Y., ARXIV200313695
  • [5] Superradiant Phase Transition in a Superconducting Circuit in Thermal Equilibrium
    Bamba, Motoaki
    Inomata, Kunihiro
    Nakamura, Yasunobu
    [J]. PHYSICAL REVIEW LETTERS, 2016, 117 (17)
  • [6] Stability of polarizable materials against superradiant phase transition
    Bamba, Motoaki
    Ogawa, Tetsuo
    [J]. PHYSICAL REVIEW A, 2014, 90 (06):
  • [7] NO-GO THEOREM CONCERNING THE SUPER-RADIANT PHASE-TRANSITION IN ATOMIC SYSTEMS
    BIALYNICKIBIRULA, I
    RZAZEWSKI, K
    [J]. PHYSICAL REVIEW A, 1979, 19 (01): : 301 - 303
  • [8] Moire bands in twisted double-layer graphene
    Bistritzer, Rafi
    MacDonald, Allan H.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2011, 108 (30) : 12233 - 12237
  • [9] Instability and entanglement of the ground state of the Dicke model
    Buzek, V
    Orszag, M
    Rosko, M
    [J]. PHYSICAL REVIEW LETTERS, 2005, 94 (16) : 1 - 4
  • [10] HIGHER-ORDER CORRECTIONS TO DICKE SUPERRADIANT PHASE-TRANSITION
    CARMICHAEL, HJ
    GARDINER, CW
    WALLS, DF
    [J]. PHYSICS LETTERS A, 1973, A 46 (01) : 47 - 48