Koszul and Gorenstein properties for homogeneous algebras

被引:45
作者
Berger, Roland [1 ]
Marconnet, Nicolas [1 ]
机构
[1] LARAL, Fac Sci & Tech, F-42023 St Etienne, France
关键词
Koszul algebras; Gorenstein algebras; N-complexes; Hochschild (co) homology;
D O I
10.1007/s10468-005-9002-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Koszul property was generalized to homogeneous algebras of degree N > 2 in [ 5], and related to N-complexes. We show that if the N-homogeneous algebra A is generalized Koszul, AS-Gorenstein and of finite global dimension, then one can apply the Van den Bergh duality theorem to A, i.e., there is a Poincare duality between Hochschild homology and cohomology of A, as for N = 2.
引用
收藏
页码:67 / 97
页数:31
相关论文
共 27 条
[1]  
[Anonymous], ALGEBRE
[2]  
[Anonymous], 1956, HOMOLOGICAL ALGEBRA
[3]   GRADED ALGEBRAS OF GLOBAL DIMENSION-3 [J].
ARTIN, M ;
SCHELTER, WF .
ADVANCES IN MATHEMATICS, 1987, 66 (02) :171-216
[4]  
Backelin Jorgen, 1985, REV ROUMAINE MATH PU, V30, P85
[5]   Koszul duality patterns in representation theory [J].
Beilinson, A ;
Ginzburg, V ;
Soergel, W .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 9 (02) :473-527
[6]  
Benson D.J., 1991, CAMBRIDGE STUD ADV M, V30
[7]   Homogeneous algebras [J].
Berger, R ;
Dubois-Violette, M ;
Wambst, M .
JOURNAL OF ALGEBRA, 2003, 261 (01) :172-185
[8]   Koszulity for nonquadratic algebras [J].
Berger, R .
JOURNAL OF ALGEBRA, 2001, 239 (02) :705-734
[9]  
BERGER R, MATHQA0301172
[10]   Yang-Mills algebra [J].
Connes, A ;
Dubois-Violette, M .
LETTERS IN MATHEMATICAL PHYSICS, 2002, 61 (02) :149-158