Land use intensity constrains the positive relationship between soil microbial diversity and multifunctionality

被引:9
作者
Jia, Jiyu [1 ,2 ]
Zhang, Jiangzhou [1 ]
Li, Yizan [1 ,2 ]
Xie, Muxi [1 ]
Wang, Guangzhou [1 ]
Zhang, Junling [1 ]
机构
[1] China Agr Univ, Key Lab Plant Soil Interact, Minist Educ, Coll Resources & Environm Sci,Natl Acad Agr Green, Beijing 100193, Peoples R China
[2] Wageningen Univ & Res, Dept Soil Qual, POB 47, NL-6700 AA Wageningen, Netherlands
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
Land use intensity; Cropping system; Soil multifunctionality; Microbial diversity; Microbial communities; BIODIVERSITY; FERTILIZATION; REDUNDANCY; COMMUNITY; NITROGEN; IMPACTS; FUNGAL; FOREST;
D O I
10.1007/s11104-022-05853-z
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Aims The positive soil biodiversity and multifunctionality relationship has been widely recognized, however in agricultural ecosystems, this relationship is context dependent and could be altered by land use intensity (LUI). Understanding how LUI affects soil microbial community and multifunctionality (SMF) is instructive for optimizing external inputs and managements. Methods We sampled soils from three cropping systems (cotton, wheat-maize and vegetable) with different LUI, sequenced both bacterial and fungal communities, and quantified the multifunctionality by averaging carbon, nitrogen and phosphorus cycling functions. The relationship between soil microbial diversity and SMF was further explored. Results The results showed that the positive effects of soil microbial diversity on SMF was significantly affected by LUI. In general, LUI decreased SMF and both bacterial and fungal diversity. Cotton and wheat-maize rotation systems with relatively lower LUI showed higher microbial diversity and SMF compared with the vegetable system, which had the highest LUI and the lowest SMF. Moreover, bacterial but not fungal diversity drove this positive relationship between microbial diversity and SMF in both cotton and wheat-maize systems but not in the vegetable system, indicating a larger bacterial effect in lower LUI system. Random forest and structural equation modeling further confirmed bacterial diversity and composition contributed to SMF mainly via promoting carbon and phosphorus cycling. Conclusions Our findings highlight the importance of LUI in influencing the relationships of biodiversity-SMF and further demonstrate that soil microbial diversity conservation with less anthropogenic disturbances is important for supporting soil functioning in agroecosystems.
引用
收藏
页码:141 / 154
页数:14
相关论文
共 66 条
[1]   Strategies used by bacterial pathogens to suppress plant defenses [J].
Abramovitch, RB ;
Martin, GB .
CURRENT OPINION IN PLANT BIOLOGY, 2004, 7 (04) :356-364
[2]   Resistance, resilience, and redundancy in microbial communities [J].
Allison, Steven D. ;
Martiny, Jennifer B. H. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2008, 105 :11512-11519
[3]   Impact of long-term agricultural management practices on soil prokaryotic communities [J].
Babin, Doreen ;
Deubel, Annette ;
Jacquiod, Samuel ;
Sorensen, Soren J. ;
Geistlinger, Joerg ;
Grosch, Rita ;
Smalla, Kornelia .
SOIL BIOLOGY & BIOCHEMISTRY, 2019, 129 :17-28
[4]   Effects of agricultural management practices on soil quality: A review of long-term experiments for Europe and China [J].
Bai, Zhanguo ;
Caspari, Thomas ;
Gonzalez, Maria Ruiperez ;
Batjes, Niels H. ;
Mader, Paul ;
Bunemann, Else K. ;
de Goede, Ron ;
Brussaard, Lijbert ;
Xu, Minggang ;
Santos Ferreira, Carla Sofia ;
Reintam, Endla ;
Fan, Hongzhu ;
Mihelic, Rok ;
Glavan, Matjaz ;
Toth, Zoltan .
AGRICULTURE ECOSYSTEMS & ENVIRONMENT, 2018, 265 :1-7
[5]   An Underground Revolution: Biodiversity and Soil Ecological Engineering for Agricultural Sustainability [J].
Bender, S. Franz ;
Wagg, Cameron ;
van der Heijden, Marcel G. A. .
TRENDS IN ECOLOGY & EVOLUTION, 2016, 31 (06) :440-452
[6]   Partial replacement of inorganic phosphorus (P) by organic manure reshapes phosphate mobilizing bacterial community and promotes P bioavailability in a paddy soil [J].
Bi, Qing-Fang ;
Li, Ke-Jie ;
Zheng, Bang-Xiao ;
Liu, Xi-Peng ;
Li, Hong-Zhe ;
Jin, Bing-Jie ;
Ding, Kai ;
Yang, Xiao-Ru ;
Lin, Xian-Yong ;
Zhu, Yong-Guan .
SCIENCE OF THE TOTAL ENVIRONMENT, 2020, 703
[7]   Organic farming induces changes in soil microbiota that affect agro-ecosystem functions [J].
Bonanomi, Giuliano ;
De Filippis, Francesca ;
Cesarano, Gaspare ;
La Storia, Antonietta ;
Ercolini, Danilo ;
Scala, Felice .
SOIL BIOLOGY & BIOCHEMISTRY, 2016, 103 :327-336
[8]   Investigating the relationship between biodiversity and ecosystem multifunctionality: challenges and solutions [J].
Byrnes, Jarrett E. K. ;
Gamfeldt, Lars ;
Isbell, Forest ;
Lefcheck, Jonathan S. ;
Griffin, John N. ;
Hector, Andy ;
Cardinale, Bradley J. ;
Hooper, David U. ;
Dee, Laura E. ;
Duffy, J. Emmett .
METHODS IN ECOLOGY AND EVOLUTION, 2014, 5 (02) :111-124
[9]  
Callahan BJ, 2016, NAT METHODS, V13, P581, DOI [10.1038/nmeth.3869, 10.1038/NMETH.3869]
[10]   Effect of P availability on straw-induced priming effect was mainly regulated by fungi in croplands [J].
Chen, Hao ;
Yin, Chang ;
Fan, Xiaoping ;
Ye, Mujun ;
Liang, Yongchao .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2021, 105 (24) :9403-9418