New Insight into the Decomposition Mechanism of Formic Acid on Pd(111): Competing Formation of CO2 and CO

被引:83
作者
Wang, Yingying [1 ,2 ]
Qj, Yuanyuan [1 ]
Zhang, Dongju [1 ]
Liu, Chengbu [1 ]
机构
[1] Shandong Univ, Inst Theoret Chem, Minist Educ, Key Lab Colloid & Interface Chem, Jinan 250100, Peoples R China
[2] Shandong Silk Text Vocat Coll, Zibo 255300, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
ELECTROCATALYTIC OXIDATION; PD; SURFACE; WATER; HYDROGEN; HCOOH; ELECTROOXIDATION; PT(111); STATE;
D O I
10.1021/jp410742p
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
While the high performance for electrooxidation of formic acid (HCOOH) has been recognized, Pd-based catalysts still suffer from CO poisoning, even though they are much more tolerant than Pt-based catalysts. Existing theoretical studies on the decomposition of HCOOH on Pd(111) surface cannot rationalize the catalyst poisoning effect. By performing density functional theory calculations, the present work reexamined the decomposition of HCOOH on Pd(111) along with the dual-path mechanism consisting of indirect and direct pathways. Two new adsorption configurations of HCOOH on Pd(111) are presented, from which the formation of CO is found to be either the same or more favorable in comparison with the formation of CO2. The present results are in distinct contrast to previous calculations where the barrier for the formation of CO2 was much lower than that for the formation of CO. Furthermore, this work also discussed the formation of CO through the reduction of CO2 and the effects of coadsorbed HCOOH and H2O molecules on the reactivity. From calculated results, it seems that the newly formed CO2 on Pd(111) can return to the surface to interact with adsorbed H atoms, partly contributing to the formation of CO. Coadsorbed HCOOH and H2O molecules are found to importantly affect the initial adsorption configuration and the decomposition mechanism of HCOOH on Pd(111). These results provide new insight into the reactivity of HCOOH on the Pd(111) surface and rationalize CO poisoning of Pd-based catalysts.
引用
收藏
页码:2067 / 2076
页数:10
相关论文
共 48 条
[1]   ELECTROCATALYSIS BY FOREIGN METAL MONOLAYERS - OXIDATION OF FORMIC-ACID ON PALLADIUM [J].
ADZIC, RR ;
SPASOJEVIC, MD ;
DESPIC, AR .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1978, 92 (01) :31-43
[2]   Synthesis and performance of Pd/SnO2-TiO2/MWCNT catalysts for direct formic acid fuel cell application [J].
An, Hao ;
Cui, Hao ;
Zhou, Dandan ;
Tao, Dejing ;
Li, Baojv ;
Zhai, Jianping ;
Li, Qin .
ELECTROCHIMICA ACTA, 2013, 92 :176-182
[3]   The electro-oxidation of formic acid on Pt-Pd single crystal bimetallic surfaces [J].
Arenz, M ;
Stamenkovic, V ;
Schmidt, TJ ;
Wandelt, K ;
Ross, PN ;
Markovic, NM .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2003, 5 (19) :4242-4251
[4]   Vibration of small molecules on Pt(111) surface [J].
Bako, Imre ;
Palinkas, Gabor .
SURFACE SCIENCE, 2006, 600 (18) :3809-3814
[5]   Catalytic and electro-catalytic oxidation of formic acid on the pure and Cu-modified Pd(111)-surface [J].
Brandt, K. ;
Steinhausen, M. ;
Wandelt, K. .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2008, 616 (1-2) :27-37
[6]   Hydrogen from formic acid decomposition over Pd and Au catalysts [J].
Bulushev, Dmitri A. ;
Beloshapkin, Sergey ;
Ross, Julian R. H. .
CATALYSIS TODAY, 2010, 154 (1-2) :7-12
[7]   Platinum-Based Nanostructured Materials: Synthesis, Properties, and Applications [J].
Chen, Aicheng ;
Holt-Hindle, Peter .
CHEMICAL REVIEWS, 2010, 110 (06) :3767-3804
[8]   Mechanism of the Electrocatalytic Oxidation of Formic Acid on Metals [J].
Cuesta, Angel ;
Cabello, Gema ;
Osawa, Masatoshi ;
Gutierrez, Claudio .
ACS CATALYSIS, 2012, 2 (05) :728-738
[9]   REACTIONS OF CARBOXYLIC-ACIDS ON THE PD(111)-(2 X 2)O SURFACE - MULTIPLE ROLES OF SURFACE OXYGEN-ATOMS [J].
DAVIS, JL ;
BARTEAU, MA .
SURFACE SCIENCE, 1991, 256 (1-2) :50-66
[10]   Theoretical Elucidation of the Competitive Electro-oxidation Mechanisms of Formic Acid on Pt(111) [J].
Gao, Wang ;
Keith, John A. ;
Anton, Josef ;
Jacob, Timo .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2010, 132 (51) :18377-18385