Sharp bound on the number of maximal sum-free subsets of integers

被引:15
作者
Balogh, Jozsef [1 ]
Liu, Hong [2 ]
Sharifzadeh, Maryam [2 ]
Treglown, Andrew [3 ]
机构
[1] Univ Illinois, Dept Math Sci, Urbana, IL 61801 USA
[2] Univ Warwick, Math Inst, Coventry, W Midlands, England
[3] Univ Birmingham, Sch Math, Birmingham, W Midlands, England
基金
英国工程与自然科学研究理事会; 欧盟地平线“2020”;
关键词
Sum-free sets; independent sets; container method; TRIANGLE-FREE GRAPHS; INDEPENDENT SETS; ABELIAN-GROUPS;
D O I
10.4171/JEMS/802
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Cameron and Erdos [6] asked whether the number of maximal sum-free sets in {1,...,n} is much smaller than the number of sum-free sets. In the same paper they gave a lower bound of 2([n/4]) for the number of maximal sum-free sets. Here, we prove the following: For each 1 <= i <= 4, there is a constant C-i such that, given any n equivalent to i mod 4, {1,...,n} contains (C-i + o(1))2(n/4) maximal sum-free sets. Our proof makes use of container and removal lemmas of Green [11, 12], a structural result of Deshouillers, Freiman, S6s and Temkin [7] and a recent bound on the number of subsets of integers with small sumset by Green and Morris [13]. We also discuss related results and open problems on the number of maximal sum-free subsets of abelian groups.
引用
收藏
页码:1885 / 1911
页数:27
相关论文
共 20 条
  • [1] [Anonymous], 2003, DOKL AKAD NAUK+
  • [2] THE TYPICAL STRUCTURE OF MAXIMAL TRIANGLE-FREE GRAPHS
    Balogh, Jozsef
    Liu, Hong
    Petrickova, Sarka
    Sharifzadeh, Maryam
    [J]. FORUM OF MATHEMATICS SIGMA, 2015, 3
  • [3] THE NUMBER OF MAXIMAL SUM-FREE SUBSETS OF INTEGERS
    Balogh, Jozsef
    Liu, Hong
    Sharifzadeh, Maryam
    Treglown, Andrew
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 143 (11) : 4713 - 4721
  • [4] Balogh J, 2015, J AM MATH SOC, V28, P669
  • [5] The number of the maximal triangle-free graphs
    Balogh, Jozsef
    Petrickova, Sarka
    [J]. BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2014, 46 : 1003 - 1006
  • [6] Notes on sum-free and related sets
    Cameron, PJ
    Erdos, P
    [J]. COMBINATORICS PROBABILITY & COMPUTING, 1999, 8 (1-2) : 95 - 107
  • [7] CAMERON PJ, 1990, NUMBER THEORY /, P61
  • [8] Deshouillers JM, 1999, ASTERISQUE, P149
  • [9] MAXIMAL SUM-FREE SETS OF ELEMENTS OF FINITE GROUPS
    DIANANDA, PH
    YAP, HP
    [J]. PROCEEDINGS OF THE JAPAN ACADEMY, 1969, 45 (01): : 1 - &
  • [10] Erdos P., 1973, ATTI CONVEGNI LINCEI, VII, P19