Entanglement of spin chains with general boundaries and of dissipative systems

被引:5
作者
Stauber, T. [1 ,2 ]
Guinea, F. [3 ]
机构
[1] Univ Minho, Ctr Fis, P-4710057 Braga, Portugal
[2] Univ Minho, Dept Fis, P-4710057 Braga, Portugal
[3] CSIC, Inst Ciencia Mat Madrid, E-28049 Madrid, Spain
关键词
Entanglement; von Neumann entropy; quantum critical point; dissipative environment; PHASE-TRANSITIONS; KONDO PROBLEM; ISING-MODEL; BOSON MODEL; QUANTUM; ENTROPY; DECOHERENCE; DYNAMICS;
D O I
10.1002/andp.200910357
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We analyze the entanglement properties of spins (qubits) close to the boundary of spin chains in the vicinity of a quantum critical point and show that the concurrence at the boundary is significantly different from the one of bulk spins. We also discuss the von Neumann entropy of dissipative environments in the vicinity of a (boundary) critical point, such as two Ising-coupled Kondo-impurities or the dissipative two-level system. Our results indicate that the entanglement (concurrence and/or von Neumann entropy) changes abruptly at the point where coherent quantum oscillations cease to exist. The phase transition modifies significantly less the entanglement if no symmetry breaking field is applied and we argue that this might be a general property of the entanglement of dissipative systems. We finally analyze the entanglement of an harmonic chain between the two ends as function of the system size. (C) 2009 WILEY-VCH Vertag GmbH & Co. KGaA, Weinheim
引用
收藏
页码:561 / 584
页数:24
相关论文
共 53 条
[1]   Entanglement in many-body systems [J].
Amico, Luigi ;
Fazio, Rosario ;
Osterloh, Andreas ;
Vedral, Vlatko .
REVIEWS OF MODERN PHYSICS, 2008, 80 (02) :517-576
[2]   Equilibrium and nonequilibrium dynamics of the sub-Ohmic spin-boson model [J].
Anders, Frithjof B. ;
Bulla, Ralf ;
Vojta, Matthias .
PHYSICAL REVIEW LETTERS, 2007, 98 (21)
[3]   SOME NUMERICAL RESULTS ON KONDO PROBLEM AND INVERSE SQUARE ONE-DIMENSIONAL ISING MODEL [J].
ANDERSON, PW ;
YUVAL, G .
JOURNAL OF PHYSICS PART C SOLID STATE PHYSICS, 1971, 4 (05) :607-&
[4]   EXACT RESULTS IN KONDO PROBLEM .2. SCALING THEORY, QUALITATIVELY CORRECT SOLUTION, AND SOME NEW RESULTS ON ONE-DIMENSIONAL CLASSICAL STATISTICAL MODELS [J].
ANDERSON, PW ;
YUVAL, G ;
HAMANN, DR .
PHYSICAL REVIEW B-SOLID STATE, 1970, 1 (11) :4464-+
[5]   Natural thermal and magnetic entanglement in the 1D Heisenberg model [J].
Arnesen, MC ;
Bose, S ;
Vedral, V .
PHYSICAL REVIEW LETTERS, 2001, 87 (01)
[6]  
Bogoliubov N., 1947, J. Phys., V11, P23
[7]   INFLUENCE OF DISSIPATION ON QUANTUM COHERENCE [J].
BRAY, AJ ;
MOORE, MA .
PHYSICAL REVIEW LETTERS, 1982, 49 (21) :1545-1549
[8]   Numerical renormalization group for bosonic systems and application to the sub-ohmic spin-boson model [J].
Bulla, R ;
Tong, NH ;
Vojta, M .
PHYSICAL REVIEW LETTERS, 2003, 91 (17)
[9]   PATH INTEGRAL APPROACH TO QUANTUM BROWNIAN-MOTION [J].
CALDEIRA, AO ;
LEGGETT, AJ .
PHYSICA A, 1983, 121 (03) :587-616
[10]   QUANTUM TUNNELLING IN A DISSIPATIVE SYSTEM [J].
CALDEIRA, AO ;
LEGGETT, AJ .
ANNALS OF PHYSICS, 1983, 149 (02) :374-456