Systems-Wide High-Dimensional Data Acquisition and Informatics Using Structural Mass Spectrometry Strategies

被引:24
|
作者
Sherrod, Stacy D. [1 ]
McLean, John A. [1 ]
机构
[1] Vanderbilt Univ, Dept Chem, Ctr Innovat Technol, Vanderbilt Inst Chem Biol,Vanderbilt Inst Integra, Nashville, TN 37235 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
COLLISION CROSS-SECTIONS; ION MOBILITY; METABOLOMICS; IDENTIFICATION; LIPIDOMICS; SEPARATION; SIGNATURES; PHENOTYPE; TOOLS; CELLS;
D O I
10.1373/clinchem.2015.238261
中图分类号
R446 [实验室诊断]; R-33 [实验医学、医学实验];
学科分类号
1001 ;
摘要
BACKGROUND: Untargeted multiomics data sets are obtained for samples in systems, synthetic, and chemical biology by integrating chromatographic separations with ion mobility mass spectrometry (IM-MS) analysis. The data sets are interrogated using bioinformatics strategies to organize the data for identification prioritization. CONTENT: The use of big data approaches for data mining of massive data sets in systems-wide analyses is presented. Untargeted biological data across multiomics dimensions are obtained using a variety of chromatography strategies with structural MS. Separation timescales for different techniques and the resulting data deluge when combined with IM-MS are presented. Data mining self-organizing map strategies are used to rapidly filter the data, highlighting those features describing uniqueness to the query. Examples are provided in longitudinal analyses in synthetic biology and human liver exposure to acetaminophen, and in chemical biology for natural product discovery from bacterial biomes. CONCLUSIONS: Matching the separation timescales of different forms of chromatography with IM-MS provides sufficient multiomics selectivity to perform untargeted systems-wide analyses. New data mining strategies provide a means for rapidly interrogating these data sets for feature prioritization and discovery in a range of applications in systems, synthetic, and chemical biology. (C) 2015 American Association for Clinical Chemistry
引用
收藏
页码:77 / 83
页数:7
相关论文
共 50 条
  • [41] Informatics for cross-sample analysis with comprehensive two-dimensional gas chromatography and high-resolution mass spectrometry (GCxGC-HRMS)
    Reichenbach, Stephen E.
    Tian, Xue
    Tao, Qingping
    Ledford, Edward B., Jr.
    Wu, Zhanpin
    Fiehn, Oliver
    TALANTA, 2011, 83 (04) : 1279 - 1288
  • [42] Novel Diagnostic Biomarkers for High-Grade Serous Ovarian Cancer Uncovered by Data-Independent Acquisition Mass Spectrometry
    Huh, Sunghyun
    Kang, Chaewon
    Park, Ji Eun
    Nam, Dowoon
    Kim, Se Ik
    Seol, Aeran
    Choi, Kyerim
    Hwang, Daehee
    Yu, Myeong-Hee
    Chung, Hyun Hoon
    Lee, Sang-Won
    Kang, Un-Beom
    JOURNAL OF PROTEOME RESEARCH, 2022, 21 (09) : 2146 - 2159
  • [43] Robust reduced-order machine learning modeling of high-dimensional nonlinear processes using noisy data
    Tan, Wallace Gian Yion
    Xiao, Ming
    Wu, Zhe
    DIGITAL CHEMICAL ENGINEERING, 2024, 11
  • [44] Mapping the Diversity of Follicular Helper T Cells in Human Blood and Tonsils Using High-Dimensional Mass Cytometry Analysis
    Wong, Michael T.
    Chen, Jinmiao
    Narayanan, Sriram
    Lin, Wenyu
    Anicete, Rosslyn
    Kiaang, Henry Tan Kun
    De lafaille, Maria Alicia Curotto
    Poidinger, Michael
    Newell, Evan W.
    CELL REPORTS, 2015, 11 (11): : 1822 - 1833
  • [45] Modified metabolites mapping by liquid chromatography-high resolution mass spectrometry using full scan/all ion Cheek for fragmentation/neutral loss acquisition
    Li, Hua
    Qin, Qian
    Shi, Xianzhe
    He, Jun
    Xu, Guowang
    JOURNAL OF CHROMATOGRAPHY A, 2019, 1583 : 80 - 87
  • [46] Comparison of Compound Identification Tools Using Data Dependent and Data Independent High-Resolution Mass Spectrometry Spectra
    Nijssen, Rosalie
    Blokland, Marco H.
    Wegh, Robin S.
    de Lange, Erik
    van Leeuwen, Stefan P. J.
    Berendsen, Bjorn J. A.
    van de Schans, Milou G. M.
    METABOLITES, 2023, 13 (07)
  • [47] LipidMatch: an automated workflow for rule-based lipid identification using untargeted high-resolution tandem mass spectrometry data
    Koelmel, Jeremy P.
    Kroeger, Nicholas M.
    Ulmer, Candice Z.
    Bowden, John A.
    Patterson, Rainey E.
    Cochran, Jason A.
    Beecher, Christopher W. W.
    Garrett, Timothy J.
    Yost, Richard A.
    BMC BIOINFORMATICS, 2017, 18
  • [48] Common cases of improper lipid annotation using high-resolution tandem mass spectrometry data and corresponding limitations in biological interpretation
    Koelmel, Jeremy P.
    Ulmer, Candice Z.
    Jones, Christina M.
    Yost, Richard A.
    Bowden, John A.
    BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR AND CELL BIOLOGY OF LIPIDS, 2017, 1862 (08): : 766 - 770
  • [49] Data acquisition workflows in liquid chromatography coupled to high resolution mass spectrometry-based metabolomics: Where do we stand?
    Fenaille, Francois
    Saint-Hilaire, Pierre Barbier
    Rousseau, Kathleen
    Junot, Christophe
    JOURNAL OF CHROMATOGRAPHY A, 2017, 1526 : 1 - 12
  • [50] Exploration of metabolite signatures using high-throughput mass spectrometry coupled with multivariate data analysis
    Zhang, Yanli
    Liu, Peng
    Li, Yuanfeng
    Zhang, Ai-Hua
    RSC ADVANCES, 2017, 7 (11) : 6780 - 6787