Systems-Wide High-Dimensional Data Acquisition and Informatics Using Structural Mass Spectrometry Strategies

被引:24
|
作者
Sherrod, Stacy D. [1 ]
McLean, John A. [1 ]
机构
[1] Vanderbilt Univ, Dept Chem, Ctr Innovat Technol, Vanderbilt Inst Chem Biol,Vanderbilt Inst Integra, Nashville, TN 37235 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
COLLISION CROSS-SECTIONS; ION MOBILITY; METABOLOMICS; IDENTIFICATION; LIPIDOMICS; SEPARATION; SIGNATURES; PHENOTYPE; TOOLS; CELLS;
D O I
10.1373/clinchem.2015.238261
中图分类号
R446 [实验室诊断]; R-33 [实验医学、医学实验];
学科分类号
1001 ;
摘要
BACKGROUND: Untargeted multiomics data sets are obtained for samples in systems, synthetic, and chemical biology by integrating chromatographic separations with ion mobility mass spectrometry (IM-MS) analysis. The data sets are interrogated using bioinformatics strategies to organize the data for identification prioritization. CONTENT: The use of big data approaches for data mining of massive data sets in systems-wide analyses is presented. Untargeted biological data across multiomics dimensions are obtained using a variety of chromatography strategies with structural MS. Separation timescales for different techniques and the resulting data deluge when combined with IM-MS are presented. Data mining self-organizing map strategies are used to rapidly filter the data, highlighting those features describing uniqueness to the query. Examples are provided in longitudinal analyses in synthetic biology and human liver exposure to acetaminophen, and in chemical biology for natural product discovery from bacterial biomes. CONCLUSIONS: Matching the separation timescales of different forms of chromatography with IM-MS provides sufficient multiomics selectivity to perform untargeted systems-wide analyses. New data mining strategies provide a means for rapidly interrogating these data sets for feature prioritization and discovery in a range of applications in systems, synthetic, and chemical biology. (C) 2015 American Association for Clinical Chemistry
引用
收藏
页码:77 / 83
页数:7
相关论文
共 50 条
  • [21] Sensitive Detection of Pharmaceutical Drugs and Metabolites in Serum Using Data-Independent Acquisition Mass Spectrometry and Open-Access Data Acquisition Tools
    Shah, Syed Muhammad Zaki
    Ali, Arslan
    Khan, Muhammad Noman
    Khadim, Adeeba
    Asmari, Mufarreh
    Uddin, Jalal
    Musharraf, Syed Ghulam
    PHARMACEUTICALS, 2022, 15 (07)
  • [22] Quantitative proteomic characterization of human sperm cryopreservation: using data-independent acquisition mass spectrometry
    Fu, Longlong
    An, Qi
    Zhang, Kaishu
    Liu, Ying
    Tong, Yue
    Xu, Jianfeng
    Zhou, Fang
    Wang, Xiaowei
    Guo, Ying
    Lu, Wenhong
    Liang, Xiaowei
    Gu, Yiqun
    BMC UROLOGY, 2019, 19 (01)
  • [23] Enhancing data acquisition for the analysis of complex organic matter in direct-infusion Orbitrap mass spectrometry using micro-scans
    Wolters, Cedric
    Flandinet, Laurene
    He, Chao
    Isa, Junko
    Orthous-Daunay, Francois-Regis
    Thissen, Roland
    Horst, Sarah
    Vuitton, Veronique
    RAPID COMMUNICATIONS IN MASS SPECTROMETRY, 2020, 34 (15)
  • [24] Automated High-Throughput Affinity Capture-Mass Spectrometry Platform with Data-Independent Acquisition
    Jing, Hui
    Richardson, Paul L.
    Potts, Gregory K.
    Senaweera, Sameera
    Marin, Violeta L.
    Mcclure, Ryan A.
    Banlasan, Adam
    Tang, Hua
    Kath, James E.
    Patel, Shitalben
    Torrent, Maricel
    Ma, Renze
    Williams, Jon D.
    JOURNAL OF PROTEOME RESEARCH, 2025, 24 (02) : 537 - 549
  • [25] Robust Generalized Fuzzy Systems Training From High-Dimensional Time-Series Data Using Local Structure Preserving PLS
    Lughofer, Edwin
    Nikzad-Langerodi, Ramin
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2020, 28 (11) : 2930 - 2943
  • [26] Annotation of the human cerebrospinal fluid lipidome using high resolution mass spectrometry and a dedicated data processing workflow
    Seyer, Alexandre
    Boudah, Samia
    Broudin, Simon
    Junot, Christophe
    Colsch, Benoit
    METABOLOMICS, 2016, 12 (05)
  • [27] Characterization of the proteome of stable and unstable carotid atherosclerotic plaques using data-independent acquisition mass spectrometry
    Lai, Zhichao
    Wang, Chaonan
    Liu, Xiaoyan
    Sun, Haidan
    Guo, Zhengguang
    Shao, Jiang
    Li, Kang
    Chen, Junye
    Wang, Jiaxian
    Lei, Xiangling
    Shu, Keqiang
    Feng, Yuyao
    Kong, Deqiang
    Sun, Wei
    Liu, Bao
    JOURNAL OF TRANSLATIONAL MEDICINE, 2024, 22 (01)
  • [28] Proteomic Profile of Daphnia pulex using Data-Independent Acquisition Mass Spectrometry and Ion Mobility Separation
    Steevensz, Aaron
    Gombar, Robert
    Vergilino, Roland
    Cristescu, Melania E.
    Vacratsis, Panayiotis O.
    PROTEOMICS, 2018, 18 (16)
  • [29] Deep learning approach for cancer subtype classification using high-dimensional gene expression data
    Shen, Jiquan
    Shi, Jiawei
    Luo, Junwei
    Zhai, Haixia
    Liu, Xiaoyan
    Wu, Zhengjiang
    Yan, Chaokun
    Luo, Huimin
    BMC BIOINFORMATICS, 2022, 23 (01)
  • [30] A strategy for the prior processing of high-resolution mass spectral data obtained from high-dimensional combined fractional diagonal chromatography
    Valkenborg, Dirk
    Thomas, Gregoire
    Krols, Luc
    Kas, Koen
    Burzykowski, Tomasz
    JOURNAL OF MASS SPECTROMETRY, 2009, 44 (04): : 516 - 529