Systems-Wide High-Dimensional Data Acquisition and Informatics Using Structural Mass Spectrometry Strategies

被引:24
|
作者
Sherrod, Stacy D. [1 ]
McLean, John A. [1 ]
机构
[1] Vanderbilt Univ, Dept Chem, Ctr Innovat Technol, Vanderbilt Inst Chem Biol,Vanderbilt Inst Integra, Nashville, TN 37235 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
COLLISION CROSS-SECTIONS; ION MOBILITY; METABOLOMICS; IDENTIFICATION; LIPIDOMICS; SEPARATION; SIGNATURES; PHENOTYPE; TOOLS; CELLS;
D O I
10.1373/clinchem.2015.238261
中图分类号
R446 [实验室诊断]; R-33 [实验医学、医学实验];
学科分类号
1001 ;
摘要
BACKGROUND: Untargeted multiomics data sets are obtained for samples in systems, synthetic, and chemical biology by integrating chromatographic separations with ion mobility mass spectrometry (IM-MS) analysis. The data sets are interrogated using bioinformatics strategies to organize the data for identification prioritization. CONTENT: The use of big data approaches for data mining of massive data sets in systems-wide analyses is presented. Untargeted biological data across multiomics dimensions are obtained using a variety of chromatography strategies with structural MS. Separation timescales for different techniques and the resulting data deluge when combined with IM-MS are presented. Data mining self-organizing map strategies are used to rapidly filter the data, highlighting those features describing uniqueness to the query. Examples are provided in longitudinal analyses in synthetic biology and human liver exposure to acetaminophen, and in chemical biology for natural product discovery from bacterial biomes. CONCLUSIONS: Matching the separation timescales of different forms of chromatography with IM-MS provides sufficient multiomics selectivity to perform untargeted systems-wide analyses. New data mining strategies provide a means for rapidly interrogating these data sets for feature prioritization and discovery in a range of applications in systems, synthetic, and chemical biology. (C) 2015 American Association for Clinical Chemistry
引用
收藏
页码:77 / 83
页数:7
相关论文
共 50 条
  • [1] Constructing metabolic association networks using high-dimensional mass spectrometry data
    Koo, Imhoi
    Wei, Xiaoli
    Shi, Xue
    Zhou, Zhanxiang
    Kim, Seongho
    Zhang, Xiang
    CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2014, 138 : 193 - 202
  • [2] Phenotypic Mapping of Metabolic Profiles Using Self-Organizing Maps of High-Dimensional Mass Spectrometry Data
    Goodwin, Cody R.
    Sherrod, Stacy D.
    Marasco, Christina C.
    Bachmann, Brian O.
    Schramm-Sapyta, Nicole
    Wikswo, John P.
    McLean, John A.
    ANALYTICAL CHEMISTRY, 2014, 86 (13) : 6563 - 6571
  • [3] PhyloQuant approach provides insights into Trypanosoma cruzi evolution using a systems-wide mass spectrometry-based quantitative protein profile
    Mule, Simon Ngao
    Costa-Martins, Andre Guilherme
    Rosa-Fernandes, Livia
    de Oliveira, Gilberto Santos
    Rodrigues, Carla Monadeli F.
    Quina, Daniel
    Rosein, Graziella E.
    Geraldes Teixeira, Marta Maria
    Palmisano, Giuseppe
    COMMUNICATIONS BIOLOGY, 2021, 4 (01)
  • [4] Analyzing high-dimensional cytometry data using FlowSOM
    Quintelier, Katrien
    Couckuyt, Artuur
    Emmaneel, Annelies
    Aerts, Joachim
    Saeys, Yvan
    Van Gassen, Sofie
    NATURE PROTOCOLS, 2021, 16 (08) : 3775 - 3801
  • [5] Botanical metabolite ions extraction from full electrospray ionization mass spectrometry using high-dimensional penalized regression
    Rostandy, Bety
    Gao, Xiaoli
    METABOLOMICS, 2019, 15 (10)
  • [6] A Bayesian high-dimensional mediation analysis for multilevel genome-wide epigenetic data
    Qiao, Xi
    Ngo, Duy
    Straight, Bilinda
    Needham, Belinda L.
    Hilton, Charles E.
    Naugle, Amy
    JOURNAL OF APPLIED STATISTICS, 2025, 52 (02) : 287 - 305
  • [7] Single Cell Proteomics for Molecular Targets in Lung Cancer: High-Dimensional Data Acquisition and Analysis
    Wang, Zheng
    Zhang, Xiaoju
    SINGLE CELL BIOMEDICINE, 2018, 1068 : 73 - 87
  • [8] Online data-driven changepoint detection for high-dimensional dynamical systems
    Lin, Sen
    Mengaldo, Gianmarco
    Maulik, Romit
    CHAOS, 2023, 33 (10)
  • [9] Immune monitoring using mass cytometry and related high-dimensional imaging approaches
    Hartmann, Felix J.
    Bendall, Sean C.
    NATURE REVIEWS RHEUMATOLOGY, 2020, 16 (02) : 87 - 99
  • [10] Improved Discrimination of Mass Spectral Isomers Using the High-Dimensional Consensus Mass Spectral Similarity Algorithm
    Mcglynn, Deborah F.
    Andriamaharavo, Nirina Rabe
    Kearsley, Anthony J.
    JOURNAL OF MASS SPECTROMETRY, 2024, 59 (10):