LiDAR derived forest structure data improves predictions of canopy N and P concentrations from imaging spectroscopy

被引:19
|
作者
Ewald, Michael [1 ]
Aerts, Raf [2 ]
Lenoir, Jonathan [3 ]
Fassnacht, Fabian Ewald [1 ]
Nicolas, Manuel [4 ]
Skowronek, Sandra [5 ]
Piat, Jerome [4 ]
Honnay, Olivier [2 ]
Garzon-Lopez, Carol Ximena [3 ,6 ]
Feilhauer, Hannes [5 ]
Van de Kerchove, Ruben [7 ]
Somers, Ben [8 ]
Hattab, Tarek [3 ,9 ]
Rocchini, Duccio [10 ,11 ,12 ]
Schmidtlein, Sebastian [1 ]
机构
[1] Karlsruhe Inst Technol, Inst Geog & Geoecol, Kaiserstr 12, D-76131 Karlsruhe, Germany
[2] Katholieke Univ Leuven, Biol Dept, Kasteelpk Arenberg 31-2435, B-3001 Leuven, Belgium
[3] Univ Picardie Jules Verne, UMR CNRS 7058, EDYSAN, UR Ecol & Dynam Syst Anthropises, 1 Rue Louvels, F-80037 Amiens 1, France
[4] Off Natl Forets, Dept Rech & Dev, F-77300 Fontainebleau, France
[5] FAU Erlangen Nuremberg, Inst Geog, Wetterkreuz 15, D-91058 Erlangen, Germany
[6] Univ Los Andes, Ecol & Vegetat Physiol Grp EcoFiv, Cr 1E 18A, Bogota, Colombia
[7] VITO Flemish Inst Technol Res, Boeretang 200, B-2400 Mol, Belgium
[8] Katholieke Univ Leuven, Dept Earth & Environm Sci, Celestijnenlaan 200E, B-3001 Leuven, Belgium
[9] IFREMER, UMR MARBEC, Ave Jean Monnet CS, Sete, France
[10] Fdn Edmund Mach, Res & Innovat Ctr, Dept Biodivers & Mol Ecol, Via E Mach 1, I-38010 San Michele All Adige, TN, Italy
[11] Univ Trento, Ctr Agr Food Environm, Via E Mach 1, I-38010 San Michele All Adige, TN, Italy
[12] Univ Trento, Ctr Integrat Biol, Via Sommarive 14, I-38123 Povo, TN, Italy
关键词
Remote sensing; Canopy biochemistry; APEX; Hyperspectral imagery; Leaf traits; Leaf nutrient content; Data fusion; Forest ecosystem; LEAF FUNCTIONAL TRAITS; LITTER DECOMPOSITION; HYPERSPECTRAL DATA; PLANT-COMMUNITIES; DECIDUOUS FOREST; NITROGEN; ECOSYSTEM; VARIABILITY; VEGETATION; TEMPERATE;
D O I
10.1016/j.rse.2018.03.038
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Imaging spectroscopy is a powerful tool for mapping chemical leaf traits at the canopy level. However, covariance with structural canopy properties is hampering the ability to predict leaf biochemical traits in structurally heterogeneous forests. Here, we used imaging spectroscopy data to map canopy level leaf nitrogen (N) and phosphorus concentrations (P-mass) of a temperate mixed forest. By integrating predictor variables derived from airborne laser scanning (LiDAR), capturing the biophysical complexity of the canopy, we aimed at improving predictions of N-mass and P-mass. We used partial least squares regression (PLSR) models to link community weighted means of both leaf constituents with 245 hyperspectral bands (426-2425 nm) and 38 LiDAR-derived variables. LiDAR-derived variables improved the model's explained variances for N-mass (R-cv(2) 0.31 vs. 0.41, % RSMEcv 3.3 vs. 3.0) and P-mass (R-cv(2) 0.45 vs. 0.63, % RSMEcv 15.3 vs. 12.5). The predictive performances of N-mass models using hyperspectral bands only, decreased with increasing structural heterogeneity included in the calibration dataset. To test the independent contribution of canopy structure we additionally fit the models using only LiDAR-derived variables as predictors. Resulting values ranged from 0.26 for N-mass to 0.54 for 13,P-mass indicating considerable covariation between biochemical traits and forest structural properties. N-mass was negatively related to the spatial heterogeneity of canopy density, whereas Pm, was negatively related to stand height and to the total cover of tree canopies. In the specific setting of this study, the importance of structural variables can be attributed to the presence of two tree species, featuring structural and biochemical properties different from co-occurring species. Still, existing functional linkages between structure and biochemistry at the leaf and canopy level suggest that canopy structure, used as proxy, can in general support the mapping of leaf biochemistry over broad spatial extents.
引用
收藏
页码:13 / 25
页数:13
相关论文
共 32 条
  • [1] Imaging spectroscopy- and lidar-derived estimates of canopy composition and structure to improve predictions of forest carbon fluxes and ecosystem dynamics
    Antonarakis, A. S.
    Munger, J. W.
    Moorcroft, P. R.
    GEOPHYSICAL RESEARCH LETTERS, 2014, 41 (07) : 2535 - 2542
  • [2] Prediction of Macronutrients at the Canopy Level Using Spaceborne Imaging Spectroscopy and LiDAR Data in a Mixedwood Boreal Forest
    Goekkaya, Kemal
    Thomas, Valerie
    Noland, Thomas L.
    McCaughey, Harry
    Morrison, Ian
    Treitz, Paul
    REMOTE SENSING, 2015, 7 (07) : 9045 - 9069
  • [3] Canopy structural attributes derived from AVIRIS imaging spectroscopy data in a mixed broadleaf/conifer forest
    Huesca, Margarita
    Garcia, Mariano
    Roth, Keely L.
    Casas, Angeles
    Ustin, Susan L.
    REMOTE SENSING OF ENVIRONMENT, 2016, 182 : 208 - 226
  • [4] LiDAR-derived canopy structure explains 137Cs concentrations in throughfall in Fukushima plantation forest
    Zhang, Yupan
    Wang, Hao
    Onda, Yuichi
    Tan, Yiliu
    Kato, Hiroaki
    ENVIRONMENTAL POLLUTION, 2025, 374
  • [5] Forest canopy water fluxes can be estimated using canopy structure metrics derived from airborne light detection and ranging (LiDAR)
    Schumacher, Johannes
    Christiansen, Jesper Riis
    AGRICULTURAL AND FOREST METEOROLOGY, 2015, 203 : 131 - 141
  • [6] Using multiscale lidar to determine variation in canopy structure from African forest elephant trails
    Keany, Jenna M.
    Burns, Patrick
    Abraham, Andrew J.
    Jantz, Patrick
    Makaga, Loic
    Saatchi, Sassan
    Maisels, Fiona
    Abernethy, Katharine
    Doughty, Christopher E.
    REMOTE SENSING IN ECOLOGY AND CONSERVATION, 2024, 10 (05) : 655 - 667
  • [7] Simulation Studies on Data Fusion Algorithms for Forest Structure from Lidar and SAR Data
    Sun, G.
    Ni, W.
    Ranson, K. Jon
    2010 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2010, : 3287 - 3290
  • [8] Prediction of Forest Canopy and Surface Fuels from Lidar and Satellite Time Series Data in a Bark Beetle-Affected Forest
    Bright, Benjamin C.
    Hudak, Andrew T.
    Meddens, Arjan J. H.
    Hawbaker, Todd J.
    Briggs, Jennifer S.
    Kennedy, Robert E.
    FORESTS, 2017, 8 (09):
  • [9] Fusion of imaging spectrometer and LIDAR data over combined radiative transfer models for forest canopy characterization
    Koetz, Benjamin
    Sun, Guoqing
    Morsdorf, Felix
    Ranson, K. J.
    Kneubuehler, Mathias
    Itten, Klaus
    Allgoewer, Britta
    REMOTE SENSING OF ENVIRONMENT, 2007, 106 (04) : 449 - 459
  • [10] A radar backscatter simulation of a forest canopy using 3D physical structures derived from LiDAR scanning
    Escobar-Ruiz, Veronica
    Maslanka, William
    Westbrook, Chris D.
    Morrison, Keith
    Calders, Kim
    Origo, Niall
    Disney, Mathias
    Fox, Nigel
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2024, : 8594 - 8621