Optimal control of an obstacle problem

被引:0
作者
Bergounioux, M
机构
关键词
optimal control; Lagrange multipliers; variational inequalities;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate optimal control problems governed by variational inequalities, and more precisely the obstacle problem. Since we adopt a numerical point of view, we first relax the feasible domain of the problem; then using both mathematical programming methods and penalization methods we get optimality conditions with smooth lagrange multipliers.
引用
收藏
页码:147 / 172
页数:26
相关论文
共 15 条
[3]  
Barbu V., 1984, OPTIMAL CONTROL VARI, DOI DOI 10.1007/BF01442167
[4]   AUGMENTED LAGRANGIAN METHOD FOR DISTRIBUTED OPTIMAL-CONTROL PROBLEMS WITH STATE CONSTRAINTS [J].
BERGOUNIOUX, M .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1993, 78 (03) :493-521
[5]   General optimality conditions for constrained convex control problems [J].
Bergounioux, M ;
Tiba, D .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1996, 34 (02) :698-711
[6]  
Ekeland I., 1974, Analyse Convexe et Problemes Variationnels
[7]  
Fortin M, 1982, Methodes de Lagrangien Augmente: Applications a la Resolution Numerique de Problemes aux Limites
[8]   OPTIMAL-CONTROL FOR VARIATIONAL-INEQUALITIES [J].
FRIEDMAN, A .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1986, 24 (03) :439-451
[9]  
Friedman A., 1988, VARIATIONAL PRINCIPL
[10]  
Glowinski R., 1976, Analyse numerique des inequations variationnelles