Impurities near an antiferromagnetic-singlet quantum critical point

被引:7
作者
Mendes-Santos, T. [1 ,2 ]
Costa, N. C. [1 ]
Batrouni, G. [3 ,4 ,5 ]
Curro, N. [2 ]
dos Santos, R. R. [1 ]
Paiva, T. [1 ]
Scalettar, R. T. [2 ]
机构
[1] Univ Fed Rio de Janeiro, Inst Fis, Caixa Postal 68-528, BR-21941972 Rio De Janeiro, RJ, Brazil
[2] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA
[3] Univ Cote Azur, INLN, CNRS, Nice, France
[4] UNS, CNRS, NUS, NTU,Int Joint Res Unit UMI 3654,MajuLab, Singapore, Singapore
[5] Natl Univ Singapore, Ctr Quantum Technol, 2 Sci Dr 3, Singapore 117542, Singapore
关键词
2-DIMENSIONAL HUBBARD-MODEL; NONMAGNETIC IMPURITIES; ELECTRONIC-STRUCTURE; SPIN-LIQUID; ORDER; SUPERCONDUCTORS; TRANSITION; DISORDER; TEMPERATURES; PLANE;
D O I
10.1103/PhysRevB.95.054419
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Heavy-fermion systems and other strongly correlated electron materials often exhibit a competition between antiferromagnetic (AF) and singlet ground states. Using exact quantum Monte Carlo simulations, we examine the effect of impurities in the vicinity of such an AF-singlet quantum critical point (QCP), through an appropriately defined "impurity susceptibility" chi(imp). Our key finding is a connection within a single calculational framework between AF domains induced on the singlet side of the transition and the behavior of the nuclear magnetic resonance (NMR) relaxation rate 1/T-1. We show that local NMR measurements provide a diagnostic for the location of the QCP, which agrees remarkably well with the vanishing of the AF order parameter and large values of chi(imp).
引用
收藏
页数:6
相关论文
共 50 条
[41]   Dirac Point Degenerate with Massive Bands at a Topological Quantum Critical Point [J].
Smith, J. C. ;
Banerjee, S. ;
Pardo, V. ;
Pickett, W. E. .
PHYSICAL REVIEW LETTERS, 2011, 106 (05)
[42]   Evolution of hyperfine parameters across a quantum critical point in CeRhIn5 [J].
Lin, C. H. ;
Shirer, K. R. ;
Crocker, J. ;
Dioguardi, A. P. ;
Lawson, M. M. ;
Bush, B. T. ;
Klavins, P. ;
Curro, N. J. .
PHYSICAL REVIEW B, 2015, 92 (15)
[43]   Pairing gaps near ferromagnetic quantum critical points [J].
Einenkel, M. ;
Meier, H. ;
Pepin, C. ;
Efetov, K. B. .
PHYSICAL REVIEW B, 2015, 91 (06)
[44]   Origin of chaos near critical points of quantum flow [J].
Efthymiopoulos, C. ;
Kalapotharakos, C. ;
Contopoulos, G. .
PHYSICAL REVIEW E, 2009, 79 (03)
[45]   Zooming on the quantum critical point in Nd-LSCO [J].
Cyr-Choiniere, Olivier ;
Daou, R. ;
Chang, J. ;
Laliberte, Francis ;
Doiron-Leyraud, Nicolas ;
LeBoeuf, David ;
Jo, Y. J. ;
Balicas, L. ;
Yan, J-Q. ;
Cheng, J. -G. ;
Zhou, J. -S. ;
Goodenough, J. B. ;
Taillefer, Louis .
PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS, 2010, 470 :S12-S13
[46]   Universal postquench coarsening and aging at a quantum critical point [J].
Gagel, Pia ;
Orth, Peter P. ;
Schmalian, Joerg .
PHYSICAL REVIEW B, 2015, 92 (11)
[47]   Stochastic approximation of dynamical exponent at quantum critical point [J].
Yasuda, Shinya ;
Suwa, Hidemaro ;
Todo, Synge .
PHYSICAL REVIEW B, 2015, 92 (10)
[48]   Spectral functions of the Higgs mode near two-dimensional quantum critical points [J].
Podolsky, Daniel ;
Sachdev, Subir .
PHYSICAL REVIEW B, 2012, 86 (05)
[49]   Quantum critical behaviour in confined SrTiO3 quantum wells embedded in antiferromagnetic SmTiO3 [J].
Jackson, Clayton A. ;
Zhang, Jack Y. ;
Freeze, Christopher R. ;
Stemmer, Susanne .
NATURE COMMUNICATIONS, 2014, 5
[50]   Microscopic study on magnetocaloric and electrocaloric effects near the critical point [J].
Honmi, Hitoshi ;
Hashizume, Yoichiro ;
Nakajima, Takashi ;
Okamura, Soichiro .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2015, 433 :126-135