Impurities near an antiferromagnetic-singlet quantum critical point

被引:7
作者
Mendes-Santos, T. [1 ,2 ]
Costa, N. C. [1 ]
Batrouni, G. [3 ,4 ,5 ]
Curro, N. [2 ]
dos Santos, R. R. [1 ]
Paiva, T. [1 ]
Scalettar, R. T. [2 ]
机构
[1] Univ Fed Rio de Janeiro, Inst Fis, Caixa Postal 68-528, BR-21941972 Rio De Janeiro, RJ, Brazil
[2] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA
[3] Univ Cote Azur, INLN, CNRS, Nice, France
[4] UNS, CNRS, NUS, NTU,Int Joint Res Unit UMI 3654,MajuLab, Singapore, Singapore
[5] Natl Univ Singapore, Ctr Quantum Technol, 2 Sci Dr 3, Singapore 117542, Singapore
关键词
2-DIMENSIONAL HUBBARD-MODEL; NONMAGNETIC IMPURITIES; ELECTRONIC-STRUCTURE; SPIN-LIQUID; ORDER; SUPERCONDUCTORS; TRANSITION; DISORDER; TEMPERATURES; PLANE;
D O I
10.1103/PhysRevB.95.054419
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Heavy-fermion systems and other strongly correlated electron materials often exhibit a competition between antiferromagnetic (AF) and singlet ground states. Using exact quantum Monte Carlo simulations, we examine the effect of impurities in the vicinity of such an AF-singlet quantum critical point (QCP), through an appropriately defined "impurity susceptibility" chi(imp). Our key finding is a connection within a single calculational framework between AF domains induced on the singlet side of the transition and the behavior of the nuclear magnetic resonance (NMR) relaxation rate 1/T-1. We show that local NMR measurements provide a diagnostic for the location of the QCP, which agrees remarkably well with the vanishing of the AF order parameter and large values of chi(imp).
引用
收藏
页数:6
相关论文
共 50 条
[31]   Pressure-tuned magnetic quantum critical point and unconventional superconductivity [J].
Cheng Jin-Guang .
ACTA PHYSICA SINICA, 2017, 66 (03)
[32]   Charge density wave quantum critical point with strong enhancement of superconductivity [J].
Gruner, Thomas ;
Jang, Dongjin ;
Huesges, Zita ;
Cardoso-Gil, Raul ;
Fecher, Gerhard H. ;
Koza, Michael M. ;
Stockert, Oliver ;
Mackenzie, Andrew P. ;
Brando, Manuel ;
Geibel, Christoph .
NATURE PHYSICS, 2017, 13 (10) :967-+
[33]   Thermal conductivity at a disordered quantum critical point [J].
Hartnoll, Sean A. ;
Ramirez, David M. ;
Santos, Jorge E. .
JOURNAL OF HIGH ENERGY PHYSICS, 2016, (04)
[34]   Where is the quantum critical point in the cuprate superconductors? [J].
Sachdev, Subir .
PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2010, 247 (03) :537-543
[35]   Dynamic Multiferroicity of a Ferroelectric Quantum Critical Point [J].
Dunnett, K. ;
Zhu, J. -X. ;
Spaldin, N. A. ;
Juricic, V. ;
Balatsky, A. V. .
PHYSICAL REVIEW LETTERS, 2019, 122 (05)
[36]   Optical conductivity in the vicinity of a quantum critical point [J].
Bogdanski, Patrick ;
Halaoui, Mohammed ;
Oles, Andrzej M. ;
Fresard, Raymond .
PHYSICAL REVIEW B, 2010, 82 (19)
[37]   A quantum magnetic analogue to the critical point of water [J].
Larrea Jimenez, J. ;
Crone, S. P. G. ;
Fogh, E. ;
Zayed, M. E. ;
Lortz, R. ;
Pomjakushina, E. ;
Conder, K. ;
Laeuchli, A. M. ;
Weber, L. ;
Wessel, S. ;
Honecker, A. ;
Normand, B. ;
Rueegg, Ch. ;
Corboz, P. ;
Ronnow, H. M. ;
Mila, F. .
NATURE, 2021, 592 (7854) :370-+
[38]   Optical conductivity of a two-dimensional metal near a quantum critical point: The status of the extended Drude formula [J].
Chubukov, Andrey V. ;
Maslov, Dmitrii L. .
PHYSICAL REVIEW B, 2017, 96 (20)
[39]   Matter fields near quantum critical point in (2+1)-dimensional U(1) gauge theory [J].
Liu, Guo-Zhu ;
Li, Wei ;
Cheng, Geng .
NUCLEAR PHYSICS B, 2010, 825 (03) :303-319
[40]   Feshbach resonance and mesoscopic phase separation near a quantum critical point in multiband FeAs-based superconductors [J].
Caivano, Rocchina ;
Fratini, Michela ;
Poccia, Nicola ;
Ricci, Alessandro ;
Puri, Alessandro ;
Ren, Zhi-An ;
Dong, Xiao-Li ;
Yang, Jie ;
Lu, Wei ;
Zhao, Zhong-Xian ;
Barba, Luisa ;
Bianconi, Antonio .
SUPERCONDUCTOR SCIENCE & TECHNOLOGY, 2009, 22 (01)