Impurities near an antiferromagnetic-singlet quantum critical point

被引:7
作者
Mendes-Santos, T. [1 ,2 ]
Costa, N. C. [1 ]
Batrouni, G. [3 ,4 ,5 ]
Curro, N. [2 ]
dos Santos, R. R. [1 ]
Paiva, T. [1 ]
Scalettar, R. T. [2 ]
机构
[1] Univ Fed Rio de Janeiro, Inst Fis, Caixa Postal 68-528, BR-21941972 Rio De Janeiro, RJ, Brazil
[2] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA
[3] Univ Cote Azur, INLN, CNRS, Nice, France
[4] UNS, CNRS, NUS, NTU,Int Joint Res Unit UMI 3654,MajuLab, Singapore, Singapore
[5] Natl Univ Singapore, Ctr Quantum Technol, 2 Sci Dr 3, Singapore 117542, Singapore
关键词
2-DIMENSIONAL HUBBARD-MODEL; NONMAGNETIC IMPURITIES; ELECTRONIC-STRUCTURE; SPIN-LIQUID; ORDER; SUPERCONDUCTORS; TRANSITION; DISORDER; TEMPERATURES; PLANE;
D O I
10.1103/PhysRevB.95.054419
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Heavy-fermion systems and other strongly correlated electron materials often exhibit a competition between antiferromagnetic (AF) and singlet ground states. Using exact quantum Monte Carlo simulations, we examine the effect of impurities in the vicinity of such an AF-singlet quantum critical point (QCP), through an appropriately defined "impurity susceptibility" chi(imp). Our key finding is a connection within a single calculational framework between AF domains induced on the singlet side of the transition and the behavior of the nuclear magnetic resonance (NMR) relaxation rate 1/T-1. We show that local NMR measurements provide a diagnostic for the location of the QCP, which agrees remarkably well with the vanishing of the AF order parameter and large values of chi(imp).
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Antiferromagnetic and Orbital Ordering on a Diamond Lattice Near Quantum Criticality
    Plumb, K. W.
    Morey, J. R.
    Rodriguez-Rivera, J. A.
    Wu, Hui
    Podlesnyak, A. A.
    McQueen, T. M.
    Broholm, C. L.
    [J]. PHYSICAL REVIEW X, 2016, 6 (04):
  • [22] Odd-Parity Superconductivity near an Inversion Breaking Quantum Critical Point in One Dimension
    Ruhman, Jonathan
    Kozii, Vladyslav
    Fu, Liang
    [J]. PHYSICAL REVIEW LETTERS, 2017, 118 (22)
  • [23] Superconductivity at low density near a ferroelectric quantum critical point: Doped SrTiO3
    Woelfle, Peter
    Balatsky, Alexander, V
    [J]. PHYSICAL REVIEW B, 2018, 98 (10)
  • [24] Path-dependent scaling of geometric phase near a quantum multi-critical point
    Patra, Ayoti
    Mukherjee, Victor
    Dutta, Amit
    [J]. JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2011,
  • [25] DC resistivity near a nematic quantum critical point: Effects of weak disorder and acoustic phonons
    Vieira, Lucas E.
    de Carvalho, Vanuildo S.
    Freire, Hermann
    [J]. ANNALS OF PHYSICS, 2020, 419
  • [26] Mobile impurity near the superfluid-Mott-insulator quantum critical point in two dimensions
    Punk, Matthias
    Sachdev, Subir
    [J]. PHYSICAL REVIEW A, 2013, 87 (03):
  • [27] Vector Boson Excitations Near Deconfined Quantum Critical Points
    Huh, Yejin
    Strack, Philipp
    Sachdev, Subir
    [J]. PHYSICAL REVIEW LETTERS, 2013, 111 (16)
  • [28] Unconventional Antiferromagnetic Quantum Critical Point in Ba(Fe0.97Cr0.03)2(As1-xPx)2
    Zhang, Wenliang
    Wei, Yuan
    Xie, Tao
    Liu, Zhaoyu
    Gong, Dongliang
    Ma, Xiaoyan
    Hu, Ding
    Cermak, Petr
    Schneidewind, Astrid
    Tucker, Gregory
    Meng, Siqin
    Huesges, Zita
    Lu, Zhilun
    Song, Jianming
    Luo, Wei
    Xu, Liangcai
    Zhu, Zengwei
    Yin, Xunqing
    Li, Hai-Feng
    Yang, Yi-feng
    Luo, Huiqian
    Li, Shiliang
    [J]. PHYSICAL REVIEW LETTERS, 2019, 122 (03)
  • [29] Highly anisotropic superconducting gap near the nematic quantum critical point of FeSe1-xSx
    Nag, Pranab Kumar
    Scott, Kirsty
    de Carvalho, Vanuildo S.
    Byland, Journey K.
    Yang, Xinze
    Walker, Morgan
    Greenberg, Aaron G.
    Klavins, Peter
    Miranda, Eduardo
    Gozar, Adrian
    Taufour, Valentin
    Fernandes, Rafael M.
    Neto, Eduardo H. da Silva
    [J]. NATURE PHYSICS, 2025, 21 (01) : 89 - 96
  • [30] Low-temperature breakdown of antiferromagnetic quantum critical behavior in FeSe
    Grinenko, V.
    Sarkar, R.
    Materne, P.
    Kamusella, S.
    Yamamshita, A.
    Takano, Y.
    Sun, Y.
    Tamegai, T.
    Efremov, D. V.
    Drechsler, S. -L.
    Orain, J. -C.
    Goko, T.
    Scheuermann, R.
    Luetkens, H.
    Klauss, H. -H.
    [J]. PHYSICAL REVIEW B, 2018, 97 (20)