p-adic interpolation of iterates

被引:21
作者
Poonen, Bjorn [1 ]
机构
[1] MIT, Dept Math, Cambridge, MA 02139 USA
基金
美国国家科学基金会;
关键词
RATIONAL FUNCTIONS; FIELDS; MAPS;
D O I
10.1112/blms/bdu010
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Extending work of Bell and of Bell, Ghioca, and Tucker, we prove that for a p-adic analytic self-map f on a closed unit polydisk, if every coefficient of f(x) - x has valuation greater than that of p(1/(p-1)), then the iterates of f can be p-adically interpolated; that is, there exists a function g(x, n) analytic in both x and n such that g(x, n) = f(n)(x) whenever n is an element of Z(>= 0).
引用
收藏
页码:525 / 527
页数:3
相关论文
共 13 条
[1]  
Bell JP, 2010, AM J MATH, V132, P1655
[2]   A generalised Skolem-Mahler-Lech theorem for affine varieties (vol 73, pg 367, 2006) [J].
Bell, Jason P. .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2008, 78 :267-272
[3]   A generalised Skolem-Mahler-Lech theorem for affine varieties [J].
Bell, Jason R. .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2006, 73 :367-379
[4]   Periods of rational maps modulo primes [J].
Benedetto, Robert L. ;
Ghioca, Dragos ;
Hutz, Benjamin ;
Kurlberg, Par ;
Scanlon, Thomas ;
Tucker, Thomas J. .
MATHEMATISCHE ANNALEN, 2013, 355 (02) :637-660
[5]   A case of the dynamical Mordell-Lang conjecture [J].
Benedetto, Robert L. ;
Ghioca, Dragos ;
Kurlberg, Par ;
Tucker, Thomas J. .
MATHEMATISCHE ANNALEN, 2012, 352 (01) :1-26
[6]   Periodic points, linearizing maps, and the dynamical Mordell-Lang problem [J].
Ghioca, D. ;
Tucker, T. J. .
JOURNAL OF NUMBER THEORY, 2009, 129 (06) :1392-1403
[7]  
HERMAN M, 1983, LECT NOTES MATH, V1007, P408
[8]  
Lech C., 1953, Ark. Mat., V2, P417, DOI DOI 10.1007/BF02590997
[9]  
Mahler K, 1935, P K AKAD WET-AMSTERD, V38, P50
[10]  
MAHLER K, 1961, J REINE ANGEW MATH, V208, P70