Inverse problem for harmonic oscillator perturbed by potential, characterization

被引:25
作者
Chelkak, D
Kargaev, P
Korotyaev, E
机构
[1] Univ Potsdam, Inst Math, D-14415 Potsdam, Germany
[2] St Petersburg State Univ, Fac Math & Mech, St Petersburg 199034, Russia
[3] Humboldt Univ, Inst Math, D-12489 Berlin, Germany
[4] Tokyo Metropolitan Univ, Math Inst, Tokyo, Japan
关键词
D O I
10.1007/s00220-004-1105-8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Consider the perturbed harmonic oscillator Ty=-y''+x(2)y+q(x)y in L-2(R), where the real potential q belongs to the Hilbert space H={q', xq is an element of L-2(R)}. The spectrum of T is an increasing sequence of simple eigenvalues lambda(n)(q)=1+2n+mu(n), ngreater than or equal to0, such that mu(n)-->0 as n-->infinity. Let psi(n)(x,q) be the corresponding eigenfunctions. Define the norming constants nu(n)(q)=lim(xup arrowinfinity)log |psi(n) (x,q)/psi(n) (-x,q)|. We show that {mu(n)}(0)(infinity) is an element of H {nu(n)}(0)(infinity) is an element of H-0 for some real Hilbert space and some subspace H-0 subset of H. Furthermore, the mapping Psi:q-->Psi(q)=({lambda(n)(q)}(0)(infinity), {nu(n)(q)}(0)(infinity)) is a real analytic isomorphism between H and S x H-0, where S is the set of all strictly increasing sequences s={s(n)}(0)(infinity) such that s(n)=1+2n+h(n), {h(n)}(0)(infinity) is an element of H. The proof is based on nonlinear functional analysis combined with sharp asymptotics of spectral data in the high energy limit for complex potentials. We use ideas from the analysis of the inverse problem for the operator -y"py, p is an element of L-2(0,1), with Dirichlet boundary conditions on the unit interval. There is no literature about the spaces H,H-0. We obtain their basic properties, using their representation as spaces of analytic functions in the disk.
引用
收藏
页码:133 / 196
页数:64
相关论文
共 15 条
[1]  
[Anonymous], J MATH SCI NY
[2]  
Bateman H., 1953, Higher transcendental functions, VII
[3]   An inverse problem for an harmonic oscillator perturbed by potential: Uniqueness [J].
Chelkak, D ;
Kargaev, P ;
Korotyaev, E .
LETTERS IN MATHEMATICAL PHYSICS, 2003, 64 (01) :7-21
[4]  
Fedoryuk M., 1993, ASYMPTOTIC ANAL
[5]  
Gesztesy F, 2000, COMMUN MATH PHYS, V211, P271
[6]   The xi function [J].
Gesztesy, F ;
Simon, B .
ACTA MATHEMATICA, 1996, 176 (01) :49-71
[7]   Uniqueness theorems in inverse spectral theory for one-dimensional Schrodinger operators [J].
Gesztesy, F ;
Simon, B .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 348 (01) :349-373
[8]   ASYMPTOTIC INVERSE SPECTRAL PROBLEM FOR ANHARMONIC-OSCILLATORS WITH ODD POTENTIALS [J].
GURARIE, D .
INVERSE PROBLEMS, 1989, 5 (03) :293-306
[9]   ASYMPTOTIC INVERSE SPECTRAL PROBLEM FOR ANHARMONIC-OSCILLATORS [J].
GURARIE, D .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1987, 112 (03) :491-502
[10]  
Levitan B. M., 1988, MATH USSR SB, V60, P77, DOI DOI 10.1070/SM1988V060N01ABEH003157