VARIANTS OF ERDOS-SELFRIDGE SUPERELLIPTIC CURVES AND THEIR RATIONAL POINTS

被引:4
作者
Das, Pranabesh [1 ]
Laishram, Shanta [1 ]
Saradha, N. [2 ]
机构
[1] Indian Stat Inst, Delhi Ctr, Stat Math Unit, New Delhi 110016, India
[2] Tata Inst Fundamental Res, Sch Math, Bombay 400005, Maharashtra, India
关键词
CONSECUTIVE TERMS; PERFECT POWERS; PRODUCTS;
D O I
10.1112/S0025579317000559
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For the superelliptic curves of the form (x + 1) center dot center dot center dot (x + i - l)(x + i + 1) .center dot center dot (x + k) = y(l) with y not equal 0, k >= 3, l >= 2, a prime and for i epsilon [2, k] backslash Omega, we show that l < e(3k). Here Omega denotes the interval [p theta, (k - p theta)), where p theta is the least prime greater than or equal to k/2. Bennett and Siksek obtained a similar bound for i = 1 in a recent paper.
引用
收藏
页码:380 / 386
页数:7
相关论文
共 16 条
[1]   Powers from products of consecutive terms in arithmetic progression [J].
Bennett, MA ;
Bruin, N ;
Gyory, K ;
Hajdu, L .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2006, 92 :273-306
[2]   Rational points on Erdos-Selfridge superelliptic curves [J].
Bennett, Michael A. ;
Siksek, Samir .
COMPOSITIO MATHEMATICA, 2016, 152 (11) :2249-2254
[3]  
Darmon H, 1997, J REINE ANGEW MATH, V490, P81
[4]   PRODUCT OF CONSECUTIVE INTEGERS IS NEVER A POWER [J].
ERDOS, P ;
SELFRIDGE, JL .
ILLINOIS JOURNAL OF MATHEMATICS, 1975, 19 (02) :292-301
[5]   Perfect powers from products of consecutive terms in arithmetic progression [J].
Gyory, K. ;
Hajdu, L. ;
Pinter, A. .
COMPOSITIO MATHEMATICA, 2009, 145 (04) :845-864
[6]   Effective majorations for the generalized Fermat equation [J].
Kraus, A .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1997, 49 (06) :1139-1161
[7]   Rational points on the superelliptic Erdos-Selfridge curve of fifth degree [J].
Lakhal, M ;
Sander, JW .
MATHEMATIKA, 2003, 50 (99-100) :113-124
[8]  
Ribet KA, 1997, ACTA ARITH, V79, P7
[9]   Rational points on a class of superelliptic curves [J].
Sander, JW .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1999, 59 :422-434
[10]   On the equation n(n+d)•••(n+(i0-1)d)(n+(i0+1)d)•••(n+(k-1)d)=yl with 0&lt;i0&lt;k-1 [J].
Saradha, N. ;
Shorey, T. N. .
ACTA ARITHMETICA, 2007, 129 (01) :1-21