Cut and patch Steiner trees for ladders

被引:3
作者
Burkard, RE [1 ]
Dudas, T [1 ]
Maier, T [1 ]
机构
[1] GRAZ TECH UNIV,INST MATH B,A-8010 GRAZ,AUSTRIA
关键词
D O I
10.1016/0012-365X(95)00275-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we deal with the Steiner minimal tree problem for a special type of point sets called ladders. We give a counterexample to the so-called 'cut and patch tree method' described in several former papers. Moreover, we explain how to modify this method such that it provides always an optimal solution.
引用
收藏
页码:53 / 61
页数:9
相关论文
共 13 条
[1]  
[Anonymous], 1961, CAN MATH BULLETIN, DOI DOI 10.4153/CMB-1961-016-2
[2]  
Chung F.R.K, 1989, MATH MAG, V62, P83, DOI 10.2307/2690388
[3]  
Chung F. R. K., 1978, ANN DISCRETE MATH, V2, P173, DOI 10.1016/S0167-5060(08)70332-7
[4]  
DU DZ, 1985, P AM MATH SOC, V95, P613
[5]  
DU DZ, 1983, T AM MATH SOC, V278, P149
[6]   STEINER MINIMAL-TREES FOR REGULAR POLYGONS [J].
DU, DZ ;
HWANG, FK ;
WENG, JF .
DISCRETE & COMPUTATIONAL GEOMETRY, 1987, 2 (01) :65-84
[7]   STEINER MINIMAL-TREES ON SETS OF 4 POINTS [J].
DU, DZ ;
HWANG, FK ;
SONG, GD ;
TING, GY .
DISCRETE & COMPUTATIONAL GEOMETRY, 1987, 2 (04) :401-414
[8]  
DU DZ, 1987, ACTA MATH APPL SIN-E, V3, P246
[9]   COMPLEXITY OF COMPUTING STEINER MINIMAL TREES [J].
GAREY, MR ;
GRAHAM, RL ;
JOHNSON, DS .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1977, 32 (04) :835-859
[10]  
HWANBG FK, 1992, ANN DISCRETE MATH, V53, P68