INFINITELY MANY SOLUTIONS FOR A SCHRODINGER-POISSON SYSTEM WITH CONCAVE AND CONVEX NONLINEARITIES

被引:21
作者
Sun, Mingzheng [1 ,2 ]
Su, Jiabao [3 ]
Zhao, Leiga [4 ]
机构
[1] Capital Normal Univ, Sch Math Sci, Beijing 100037, Peoples R China
[2] North China Univ Technol, Coll Sci, Beijing 100144, Peoples R China
[3] Capital Normal Univ, Sch Math Sci, Beijing 100037, Peoples R China
[4] Beijing Univ Chem Technol, Dept Math, Beijing 100029, Peoples R China
关键词
Schrodinger-Poisson system; infinitely many solutions; concave and convex nonlinearities; nonlocal term; variational methods; POSITIVE SOLUTIONS; SOLITARY WAVES; MAXWELL; EXISTENCE; EQUATIONS;
D O I
10.3934/dcds.2015.35.427
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we obtain the existence of infinitely many solutions for the following Schrodinger-Poisson system {-Delta u vertical bar a (x) u vertical bar phi u = k(x) vertical bar u vertical bar(q-2) u - h(x)vertical bar u vertical bar(p-2) u, x is an element of R-3; -Delta phi = u(2), lim(vertical bar x vertical bar -> +infinity) phi(x) = 0; x is an element of R-3, where 1 < q < 2 < p < +infinity, a (x), k (x) and h (x) are measurable functions satisfying suitable assumptions.
引用
收藏
页码:427 / 440
页数:14
相关论文
共 26 条
[1]   Multiple bound states for the Schrodinger-Poisson problem [J].
Ambrosetti, Antonio ;
Ruiz, David .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2008, 10 (03) :391-404
[2]   Ground state solutions for the nonlinear Schrodinger-Maxwell equations [J].
Azzollini, A. ;
Pomponio, A. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 345 (01) :90-108
[3]   On the Schrodinger-Maxwell equations under the effect of a general nonlinear term [J].
Azzollini, A. ;
d'Avenia, P. ;
Pomponio, A. .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2010, 27 (02) :779-791
[4]   Nonlinear Schrodinger equations with steep potential well [J].
Bartsch, T ;
Pankov, A ;
Wang, ZQ .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2001, 3 (04) :549-569
[5]  
Benci V., 1998, Top. Meth. Nonlinear Anal, V11, P283, DOI [https://doi.org/10.12775/TMNA.1998.019, DOI 10.12775/TMNA.1998.019]
[6]  
Benmlih K., 2002, P 2002 FEZ C PARTIAL, V9, P65
[7]  
BERESTYCKI H, 1983, ARCH RATION MECH AN, V82, P313
[8]   High energy solutions for the superlinear Schrodinger-Maxwell equations [J].
Chen, Shang-Jie ;
Tang, Chun-Lei .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (10) :4927-4934
[9]   Solitary waves for nonlinear Klein-Gordon-Maxwell and Schrodinger-Maxwell equations [J].
D'Aprile, T ;
Mugnai, D .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2004, 134 :893-906
[10]   Infinitely many positive solutions for a Schrodinger-Poisson system [J].
d'Avenia, Pietro ;
Pomponio, Alessio ;
Vaira, Giusi .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (16) :5705-5721