Stability of additivity and fixed point methods

被引:41
作者
Brzdek, Janusz [1 ]
机构
[1] Pedag Univ, Dept Math, PL-30084 Krakow, Poland
关键词
additivity; fixed point; Ulam stability; HYERS-ULAM STABILITY; FUNCTIONAL-EQUATIONS; MAPPINGS;
D O I
10.1186/1687-1812-2013-285
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that the fixed point methods allow to investigate Ulam's type stability of additivity quite efficiently and precisely. Using them we generalize, extend and complement some earlier classical results concerning the stability of the additive Cauchy equation.
引用
收藏
页数:9
相关论文
共 38 条
[1]  
[Anonymous], 1998, Stability of Functional Equations in Several Variables
[2]  
Aoki T., 1950, J MATH SOC JAPAN, V2, P64, DOI [10.2969/jmsj/00210064, DOI 10.2969/JMSJ/00210064]
[3]  
Bahyrycz A, 2013, ACTA MATH HUNG
[4]   THE STABILITY OF CERTAIN FUNCTIONAL-EQUATIONS [J].
BAKER, JA .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1991, 112 (03) :729-732
[5]   On Some Recent Developments in Ulam's Type Stability [J].
Brillouet-Belluot, Nicole ;
Brzdek, Janusz ;
Cieplinski, Krzysztof .
ABSTRACT AND APPLIED ANALYSIS, 2012,
[6]   Hyperstability of the Cauchy equation on restricted domains [J].
Brzdek, J. .
ACTA MATHEMATICA HUNGARICA, 2013, 141 (1-2) :58-67
[7]  
Brzdek J., 1994, Stability of Mappings of Hyers-Ulam Type, P19
[8]   A HYPERSTABILITY RESULT FOR THE CAUCHY EQUATION [J].
Brzdek, Janusz .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2014, 89 (01) :33-40
[9]   Stability of the equation of the p-Wright affine functions [J].
Brzdek, Janusz .
AEQUATIONES MATHEMATICAE, 2013, 85 (03) :497-503
[10]   A fixed point approach to the stability of functional equations in non-Archimedean metric spaces [J].
BrzdeK, Janusz ;
Cieplinski, Krzysztof .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (18) :6861-6867