Dielectric Breakdown of Additively Manufactured Polymeric Materials

被引:29
作者
Monzel, W. Jacob [1 ]
Hoff, Brad W. [1 ]
Maestas, Sabrina S. [1 ]
French, David M. [1 ]
Hayden, Steven C. [2 ]
机构
[1] Air Force Res Lab, Albuquerque, NM 87117 USA
[2] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, POB 1663, Los Alamos, NM 87545 USA
关键词
Rapid prototyping; dielectric breakdown; plastics; dielectric materials; dielectric measurements; dielectric strength; additive manufacturing; SLA; Polyjet; fused deposition modeling; FDM; SLS;
D O I
10.1109/TDEI.2015.005199
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Dielectric strength testing of selected Polyjet-printed polymer plastics was performed in accordance with ASTM D149. This dielectric strength data is compared to manufacturer-provided dielectric strength data for selected plastics printed using the stereolithography (SLA), fused deposition modeling (FDM), and selective laser sintering (SLS) methods. Tested Polyjet samples demonstrated dielectric strengths as high as 47.5 kV/mm for a 0.5 mm thick sample and 32.1 kV/mm for a 1.0 mm sample. The dielectric strength of the additively manufactured plastics evaluated as part of this study was lower than the majority of non-printed plastics by at least 15% (with the exception of polycarbonate).
引用
收藏
页码:3543 / 3549
页数:7
相关论文
共 50 条
[31]   A Displacement Controlled Fatigue Test Method for Additively Manufactured Materials [J].
Parvez, Mohammad Masud ;
Chen, Yitao ;
Karnati, Sreekar ;
Coward, Connor ;
Newkirk, Joseph W. ;
Liou, Frank .
APPLIED SCIENCES-BASEL, 2019, 9 (16)
[32]   IMPACT AND FATIGUE CHARACTERISTICS OF ADDITIVELY MANUFACTURED STEEL MATERIALS: A REVIEW [J].
Wang, Jing Jing ;
Zhang, Meng ;
Tan, Xipeng ;
Jing, Wei ;
Liu, Er Jia ;
Tor, Shu Beng ;
Li, Hua .
PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON PROGRESS IN ADDITIVE MANUFACTURING, 2018, :487-492
[33]   Machine learning for predicting fatigue properties of additively manufactured materials [J].
Yi, Min ;
Xue, Ming ;
Cong, Peihong ;
Song, Yang ;
Zhang, Haiyang ;
Wang, Lingfeng ;
Zhou, Liucheng ;
Li, Yinghong ;
Guo, Wanlin .
CHINESE JOURNAL OF AERONAUTICS, 2024, 37 (04) :1-22
[34]   Additively Manufactured Leaky Wave Antenna in Dielectric Image Line Technology [J].
Bader, Tobias ;
Gold, Gerald .
2024 54TH EUROPEAN MICROWAVE CONFERENCE, EUMC 2024, 2024, :224-227
[35]   Crack Growth in a Range of Additively Manufactured Aerospace Structural Materials [J].
Iliopoulos, Athanasios ;
Jones, Rhys ;
Michopoulos, John ;
Phan, Nam ;
Raman, R. K. Singh .
AEROSPACE, 2018, 5 (04)
[36]   Accessing pore microstructure–property relationships for additively manufactured materials [J].
Raßloff A. ;
Schulz P. ;
Kühne R. ;
Ambati M. ;
Koch I. ;
Zeuner A.T. ;
Gude M. ;
Zimmermann M. ;
Kästner M. .
GAMM Mitteilungen, 2021, 44 (04)
[37]   Spindle vibration mitigation utilizing additively manufactured auxetic materials [J].
Kim, Jungsub ;
Hegde, Himanshu ;
Kim, Hyo-young ;
Lee, ChaBum .
JOURNAL OF MANUFACTURING PROCESSES, 2022, 73 :633-641
[38]   Phase field fracture model for additively manufactured metallic materials [J].
Li, Cunyi ;
Fang, Jianguang ;
Wan, Yuheng ;
Qiu, Na ;
Steven, Grant ;
Li, Qing .
INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2023, 251
[39]   Efficient modelling of surface roughness effects in additively manufactured materials [J].
Ciochon, Agnieszka ;
Kennedy, John .
APPLIED ACOUSTICS, 2024, 220
[40]   Strategy of computational predictions for mechanical behaviour of additively manufactured materials [J].
Zinovieva, O. ;
Zinoviev, A. ;
Ploshikhin, V. ;
Romanova, V. ;
Balokhonov, R. .
MATERIALS SCIENCE AND TECHNOLOGY, 2018, 34 (13) :1591-1605