Sparse-view imaging of a fiber internal structure in holographic diffraction tomography via a convolutions neural network

被引:14
作者
Di, Jianglei [1 ]
Han, Wenxuan [1 ]
Liu, Sisi [1 ]
Wang, Kaiqiang [1 ]
Tang, Ju [1 ]
Zhao, Jianlin [1 ]
机构
[1] Northwestern Polytech Univ, Sch Phys Sci & Technol, MOE Key Lab Mat Phys & Chem Extraordinary Condit, Shaanxi Key Lab Opt Informat Technol, Xian 710129, Peoples R China
基金
中国国家自然科学基金;
关键词
COMPUTED-TOMOGRAPHY; REFRACTIVE-INDEX; INVERSE PROBLEMS; LIVING CELLS; MICROSCOPY; RECONSTRUCTION; MORPHOMETRY; NET;
D O I
10.1364/AO.404276
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Deep learning has recently shown great potential in computational imaging. Here, we propose a deep-learning-based reconstruction method to realize the sparse-view imaging of a fiber internal structure in holographic diffraction tomography. By taking the sparse-view sinogram as the input and the cross-section image obtained by the dense-view sinogram as the ground truth, the neural network can reconstruct the cross-section image from the sparse-view sinogram. It performs better than the corresponding filtered back-projection algorithm with a sparse-view sinogram, both in the case of simulated data and real experimental data. (C) 2020 Optical Society of America
引用
收藏
页码:A234 / A242
页数:9
相关论文
共 42 条
[1]   Few-view CT reconstruction with group-sparsity regularization [J].
Bao, Peng ;
Zhou, Jiliu ;
Zhang, Yi .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING, 2018, 34 (09)
[2]   On the use of deep learning for computational imaging [J].
Barbastathis, George ;
Ozcan, Aydogan ;
Situ, Guohai .
OPTICA, 2019, 6 (08) :921-943
[3]   Directional View Interpolation for Compensation of Sparse Angular Sampling in Cone-Beam CT [J].
Bertram, Matthias ;
Wiegert, Jens ;
Schaefer, Dirk ;
Aach, Til ;
Rose, Georg .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2009, 28 (07) :1011-1022
[4]   Current concepts - Computed tomography - An increasing source of radiation exposure [J].
Brenner, David J. ;
Hall, Eric J. .
NEW ENGLAND JOURNAL OF MEDICINE, 2007, 357 (22) :2277-2284
[5]   Cell refractive index tomography by digital holographic microscopy [J].
Charrière, F ;
Marian, A ;
Montfort, F ;
Kuehn, J ;
Colomb, T ;
Cuche, E ;
Marquet, P ;
Depeursinge, C .
OPTICS LETTERS, 2006, 31 (02) :178-180
[6]   Living specimen tomography by digital holographic microscopy:: morphometry of testate amoeba [J].
Charriere, Florian ;
Pavillon, Nicolas ;
Colomb, Tristan ;
Depeursinge, Christian ;
Heger, Thierry J. ;
Mitchell, Edward A. D. ;
Marquet, Pierre ;
Rappaz, Benjamin .
OPTICS EXPRESS, 2006, 14 (16) :7005-7013
[7]   Compressed sensing based cone-beam computed tomography reconstruction with a first-order method [J].
Choi, Kihwan ;
Wang, Jing ;
Zhu, Lei ;
Suh, Tae-Suk ;
Boyd, Stephen ;
Xing, Lei .
MEDICAL PHYSICS, 2010, 37 (09) :5113-5125
[8]   A digital holographic microscope for complete characterization of microelectromechanical systems [J].
Coppola, G ;
Ferraro, P ;
Iodice, M ;
De Nicola, S ;
Finizio, A ;
Grilli, S .
MEASUREMENT SCIENCE AND TECHNOLOGY, 2004, 15 (03) :529-539
[9]   Chemical species tomography of turbulent flows: Discrete ill-posed and rank deficient problems and the use of prior information [J].
Daun, Kyle J. ;
Grauer, Samuel J. ;
Hadwin, Paul J. .
JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2016, 172 :58-74
[10]  
Di J., 2020, DIGITAL HOLOGRAPHY 3