Oxygen vacancy engineering of Bi2O3/Bi2O2CO3 heterojunctions: Implications of the interfacial charge transfer, NO adsorption and removal

被引:235
作者
Lu, Yanfeng [1 ,2 ,3 ]
Huang, Yu [1 ,3 ]
Zhang, Yufei [1 ,3 ]
Cao, Jun-ji [1 ,3 ]
Li, Haiwei [4 ]
Bian, Cheng [3 ]
Lee, Shun Cheng [4 ]
机构
[1] Chinese Acad Sci, State Key Lab Loess & Quaternary Geol SKLLQG, Inst Earth Environm, Xian 710061, Shaanxi, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Chinese Acad Sci, Key Lab Aerosol Chem & Phys, Inst Earth Environm, Xian 710061, Shaanxi, Peoples R China
[4] Hong Kong Polytech Univ, Dept Civil & Environm Engn, Hong Kong, Hong Kong, Peoples R China
基金
美国国家科学基金会;
关键词
Oxygen vacancy; Bi2O3/Bi2O2CO3; heterojunction; Photocatalysis; Charge separation; NO enrichment and removal; VISIBLE-LIGHT; PHOTOCATALYTIC PERFORMANCE; NITRIC-OXIDE; 001; FACETS; EFFICIENT; DEGRADATION; TIO2; G-C3N4; CO2; NANOPARTICLES;
D O I
10.1016/j.apcatb.2018.01.008
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Efficient enrichment of targeted gaseous pollutants and fast diffusion rates of charge carriers are essential for the photocatalytic removal of nitric oxides at ambient concentration levels. Here we demonstrate that the construction of nano-structured Bi2O3/Bi2O2CO3 heterojunctions with oxygen vacancies, increasing the photocatalytic NO removal activity, durability and selectivity for final products nitrate formation. Combining the experimental and density-functional theory calculations, it was elucidated that the presence of surface oxygen vacancies not only work as adsorption sites of low concentration NO, but also offer an intimate and integrated structure between surface defects and the light-harvesting heterojunctions, which can facilitate solar energy conversion and charge carrier transfer (more than 2 times). Control experiments with pristine Bi2O3/Bi2O2CO3 also confirmed the crucial role of surface oxygen vacancies on the improvement of NO adsorption and removal ability during the photocatalytic degradation process. We explain the enhanced removal of NO through the synergistic effect of oxygen vacancy and heterojunction, which not only guaranteed the generation of more center dot OH radicals, but also provided another route to produce hydrogen peroxide. Our findings may provide an opportunity to develop a promising catalyst for air pollution control.
引用
收藏
页码:357 / 367
页数:11
相关论文
共 50 条
[1]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[2]   Anchoring High-Concentration Oxygen Vacancies at Interfaces of CeO2-x/Cu toward Enhanced Activity for Preferential CO Oxidation [J].
Chen, Shaoqing ;
Li, Liping ;
Hu, Wanbiao ;
Huang, Xinsong ;
Li, Qi ;
Xu, Yangsen ;
Zuo, Ying ;
Li, Guangshe .
ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (41) :22999-23007
[3]   Evidence of superoxide radical contribution to demineralization of sulfamethoxazole by visible-light-driven Bi2O3/Bi2O2CO3/Sr6Bi2O9 photocatalyst [J].
Ding, Shiyuan ;
Niu, Junfeng ;
Bao, Yueping ;
Hu, Lijuan .
JOURNAL OF HAZARDOUS MATERIALS, 2013, 262 :812-818
[4]   Self doping promoted photocatalytic removal of no under visible light with bi2moo6: Indispensable role of superoxide ions [J].
Ding, Xing ;
Ho, Wingkei ;
Shang, Jian ;
Zhang, Lizhi .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2016, 182 :316-325
[5]   Synergistic integration of thermocatalysis and photocatalysis on black defective (BiO)2CO3 microspheres [J].
Dong, Fan ;
Xiong, Ting ;
Sun, Yanjuan ;
Huang, Hongwei ;
Wu, Zhongbiao .
JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (36) :18466-18474
[6]   Immobilization of Polymeric g-C3N4 on Structured Ceramic Foam for Efficient Visible Light Photocatalytic Air Purification with Real Indoor Illumination [J].
Dong, Fan ;
Wang, Zhenyu ;
Li, Yuhan ;
Ho, Wing-Kei ;
Lee, S. C. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2014, 48 (17) :10345-10353
[7]   Removal of Nitric Oxide through Visible Light Photocatalysis by g-C3N4 Modified with Perylene Imides [J].
Dong, Guohui ;
Yang, Liping ;
Wang, Fu ;
Zang, Ling ;
Wang, Chuanyi .
ACS CATALYSIS, 2016, 6 (10) :6511-6519
[8]   Enhanced visible-light-driven photocatalytic inactivation of Escherichia coli by Bi2O2CO3/Bi3NbO7 composites [J].
Gan, Huihui ;
Zhang, Gaoke ;
Huang, Hongxia .
JOURNAL OF HAZARDOUS MATERIALS, 2013, 250 :131-137
[9]   High secondary aerosol contribution to particulate pollution during haze events in China [J].
Huang, Ru-Jin ;
Zhang, Yanlin ;
Bozzetti, Carlo ;
Ho, Kin-Fai ;
Cao, Jun-Ji ;
Han, Yongming ;
Daellenbach, Kaspar R. ;
Slowik, Jay G. ;
Platt, Stephen M. ;
Canonaco, Francesco ;
Zotter, Peter ;
Wolf, Robert ;
Pieber, Simone M. ;
Bruns, Emily A. ;
Crippa, Monica ;
Ciarelli, Giancarlo ;
Piazzalunga, Andrea ;
Schwikowski, Margit ;
Abbaszade, Guelcin ;
Schnelle-Kreis, Juergen ;
Zimmermann, Ralf ;
An, Zhisheng ;
Szidat, Soenke ;
Baltensperger, Urs ;
El Haddad, Imad ;
Prevot, Andre S. H. .
NATURE, 2014, 514 (7521) :218-222
[10]   Visible light Bi2S3/Bi2O3/Bi2O2CO3 photocatalyst for effective degradation of organic pollutions [J].
Huang, Yongchao ;
Fan, Wenjie ;
Long, Bei ;
Li, Haibo ;
Zhao, Fengyi ;
Liu, Zili ;
Tong, Yexiang ;
Ji, Hongbing .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2016, 185 :68-76