Longest Common Subsequence in k Length Substrings

被引:0
作者
Benson, Gary [1 ]
Levy, Avivit [2 ]
Shalom, B. Riva [2 ]
机构
[1] Boston Univ, Dept Comp Sci, 111 Cummington St, Boston, MA 02215 USA
[2] Shenkar Coll, Dept Software Engn, IL-52526 Ramat Gan, Israel
来源
SIMILARITY SEARCH AND APPLICATIONS (SISAP) | 2013年 / 8199卷
关键词
Longest Common Subsequence; Similarity of strings; Dynamic Programming; ALGORITHM; ALIGNMENT; LCS;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper we define a new problem, motivated by computational biology, LCSk aiming at finding the maximal number of k length substrings, matching in both input string while preserving their order of appearance in the input strings. The traditional LCS definition is a spacial case of our problem, where k = 1. We provide an algorithm, solving the general case in O(n(2)) time, where n is the length of the input, equaling the time required for the special case of k = 1. The space requirement is O(kn). In order to enable backtracking of the solution O(n(2)) space is needed.
引用
收藏
页码:257 / 265
页数:9
相关论文
共 18 条
[11]   LINEAR SPACE ALGORITHM FOR COMPUTING MAXIMAL COMMON SUBSEQUENCES [J].
HIRSCHBERG, DS .
COMMUNICATIONS OF THE ACM, 1975, 18 (06) :341-343
[12]  
Hyyro H, 2004, P 15 AUSTR WORKSH CO
[13]   LCS approximation via embedding into locally non-repetitive strings [J].
Landau, G. M. ;
Levy, A. ;
Newman, I. .
INFORMATION AND COMPUTATION, 2011, 209 (04) :705-716
[14]  
Landau GM, 2004, LECT NOTES COMPUT SC, V3109, P173
[15]  
Landau GM, 2003, LECT NOTES COMPUT SC, V2676, P225
[16]   On the common substring alignment problem [J].
Landau, GM ;
Ziv-Ukelson, M .
JOURNAL OF ALGORITHMS-COGNITION INFORMATICS AND LOGIC, 2001, 41 (02) :338-359
[17]   The constrained longest common subsequence problem [J].
Tsai, YT .
INFORMATION PROCESSING LETTERS, 2003, 88 (04) :173-176
[18]   STRING-TO-STRING CORRECTION PROBLEM [J].
WAGNER, RA ;
FISCHER, MJ .
JOURNAL OF THE ACM, 1974, 21 (01) :168-173