Longest Common Subsequence in k Length Substrings

被引:0
作者
Benson, Gary [1 ]
Levy, Avivit [2 ]
Shalom, B. Riva [2 ]
机构
[1] Boston Univ, Dept Comp Sci, 111 Cummington St, Boston, MA 02215 USA
[2] Shenkar Coll, Dept Software Engn, IL-52526 Ramat Gan, Israel
来源
SIMILARITY SEARCH AND APPLICATIONS (SISAP) | 2013年 / 8199卷
关键词
Longest Common Subsequence; Similarity of strings; Dynamic Programming; ALGORITHM; ALIGNMENT; LCS;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper we define a new problem, motivated by computational biology, LCSk aiming at finding the maximal number of k length substrings, matching in both input string while preserving their order of appearance in the input strings. The traditional LCS definition is a spacial case of our problem, where k = 1. We provide an algorithm, solving the general case in O(n(2)) time, where n is the length of the input, equaling the time required for the special case of k = 1. The space requirement is O(kn). In order to enable backtracking of the solution O(n(2)) space is needed.
引用
收藏
页码:257 / 265
页数:9
相关论文
共 18 条
[1]   A BIT-STRING LONGEST-COMMON-SUBSEQUENCE ALGORITHM [J].
ALLISON, L ;
DIX, TI .
INFORMATION PROCESSING LETTERS, 1986, 23 (06) :305-310
[2]   Weighted LCS [J].
Amir, Amihood ;
Gotthilf, Zvi ;
Shalom, B. Riva .
JOURNAL OF DISCRETE ALGORITHMS, 2010, 8 (03) :273-281
[3]   Generalized LCS [J].
Amir, Amihood ;
Hartman, Tzvika ;
Kapah, Oren ;
Shalom, B. Riva ;
Tsur, Dekel .
THEORETICAL COMPUTER SCIENCE, 2008, 409 (03) :438-449
[4]   Matching for run-length encoded strings [J].
Apostolico, A ;
Landau, GM ;
Skiena, S .
JOURNAL OF COMPLEXITY, 1999, 15 (01) :4-16
[5]  
Benson G, 2013, LECT NOTES COMPUT SC, V7922, P50, DOI 10.1007/978-3-642-38905-4_7
[6]   A survey of longest common subsequence algorithms [J].
Bergroth, L ;
Hakonen, H ;
Raita, T .
SPIRE 2000: SEVENTH INTERNATIONAL SYMPOSIUM ON STRING PROCESSING AND INFORMATION RETRIEVAL - PROCEEDINGS, 2000, :39-48
[7]  
Blin G, 2012, LECT NOTES COMPUT SC, V7608, P130, DOI 10.1007/978-3-642-34109-0_14
[8]   On the generalized constrained longest common subsequence problems [J].
Chen, Yi-Ching ;
Chao, Kun-Mao .
JOURNAL OF COMBINATORIAL OPTIMIZATION, 2011, 21 (03) :383-392
[9]   A fast and practical bit-vector algorithm for the Longest Common Subsequence problem [J].
Crochemore, M ;
Iliopoulos, CS ;
Pinzon, YJ ;
Reid, JF .
INFORMATION PROCESSING LETTERS, 2001, 80 (06) :279-285
[10]  
Gotthilf Z, 2010, LECT NOTES COMPUT SC, V6393, P250, DOI 10.1007/978-3-642-16321-0_26