Big Data and Artificial Intelligence: Opportunities and Threats in Electrophysiology

被引:18
作者
van de Leur, Rutger R. [1 ]
Boonstra, Machteld J. [1 ]
Bagheri, Ayoub [1 ,2 ]
Roudijk, Rob W. [1 ,3 ]
Sammani, Arjan [1 ]
Taha, Karim [1 ,3 ]
Doevendans, Pieter A. F. M. [1 ,3 ,5 ]
van der Harst, Pim [1 ]
van Dam, Peter M. [1 ]
Hassink, Rutger J. [1 ]
van Es, Rene [1 ]
Asselbergs, Folkert W. [1 ,4 ,6 ,7 ]
机构
[1] Univ Utrecht, Univ Med Ctr Utrecht, Dept Cardiol, Div Heart & Lungs, Utrecht, Netherlands
[2] Univ Utrecht, Dept Methodol & Stat, Utrecht, Netherlands
[3] Netherlands Heart Inst, Utrecht, Netherlands
[4] UCL, Fac Populat Hlth Sci, Inst Cardiovasc Sci, London, England
[5] Minist Def, Cent Mil Hosp Utrecht, Utrecht, Netherlands
[6] UCL, Hlth Data Res UK, London, England
[7] UCL, Inst Hlth Informat, London, England
关键词
Artificial intelligence; deep learning; neural networks; cardiology; electrophysiology; ECG; big data; ATRIAL-FIBRILLATION; ELECTROCARDIOGRAM INTERPRETATION; INTERINDIVIDUAL VARIABILITY; EXTERNAL VALIDATION; BRUGADA-SYNDROME; LEAD PLACEMENT; TASK-FORCE; ECG; ACCURACY; ASSOCIATION;
D O I
10.15420/aer.2020.26
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
The combination of big data and artificial intelligence (AI) is having an increasing impact on the field of electrophysiology. Algorithms are created to improve the automated diagnosis of clinical ECGs or ambulatory rhythm devices. Furthermore, the use of AI during invasive electrophysiological studies or combining several diagnostic modalities into AI algorithms to aid diagnostics are being investigated. However, the clinical performance and applicability of created algorithms are yet unknown. In this narrative review, opportunities and threats of AI in the field of electrophysiology are described, mainly focusing on ECGs. Current opportunities are discussed with their potential clinical benefits as well as the challenges. Challenges in data acquisition, model performance, (external) validity, clinical implementation, algorithm interpretation as well as the ethical aspects of AI research are discussed. This article aims to guide clinicians in the evaluation of new AI applications for electrophysiology before their clinical implementation.
引用
收藏
页码:146 / 154
页数:9
相关论文
共 110 条
[1]   Accuracy of electrocardiogram interpretation by cardiologists in the setting of incorrect computer analysis [J].
Anh, Daejoon ;
Krishnan, Subramaniam ;
Bogun, Frank .
JOURNAL OF ELECTROCARDIOLOGY, 2006, 39 (03) :343-345
[2]   Opening the black box of machine learning [J].
不详 .
LANCET RESPIRATORY MEDICINE, 2018, 6 (11) :801-801
[3]   Age and Sex Estimation Using Artificial Intelligence From Standard 12-Lead ECGs [J].
Attia, Zachi, I ;
Friedman, Paul A. ;
Noseworthy, Peter A. ;
Lopez-Jimenez, Francisco ;
Ladewig, Dorothy J. ;
Satam, Gaurav ;
Pellikka, Patricia A. ;
Munger, Thomas M. ;
Asirvatham, Samuel J. ;
Scott, Christopher G. ;
Carter, Rickey E. ;
Kapa, Suraj .
CIRCULATION-ARRHYTHMIA AND ELECTROPHYSIOLOGY, 2019, 12 (09)
[4]   An artificial intelligence-enabled ECG algorithm for the identification of patients with atrial fibrillation during sinus rhythm: a retrospective analysis of outcome prediction [J].
Attia, Zachi, I ;
Noseworthy, Peter A. ;
Lopez-Jimenez, Francisco ;
Asirvatham, Samuel J. ;
Deshmukh, Abhishek J. ;
Gersh, Bernard J. ;
Carter, Rickey E. ;
Yao, Xiaoxi ;
Rabinstein, Alejandro A. ;
Erickson, Brad J. ;
Kapa, Suraj ;
Friedman, Paul A. .
LANCET, 2019, 394 (10201) :861-867
[5]   Prospective validation of a deep learning electrocardiogram algorithm for the detection of left ventricular systolic dysfunction [J].
Attia, Zachi I. ;
Kapa, Suraj ;
Yao, Xiaoxi ;
Lopez-Jimenez, Francisco ;
Mohan, Tarun L. ;
Pellikka, Patricia A. ;
Carter, Rickey E. ;
Shah, Nilay D. ;
Friedman, Paul A. ;
Noseworthy, Peter A. .
JOURNAL OF CARDIOVASCULAR ELECTROPHYSIOLOGY, 2019, 30 (05) :668-674
[6]   Screening for cardiac contractile dysfunction using an artificial intelligence-enabled electrocardiogram [J].
Attia, Zachi I. ;
Kapa, Suraj ;
Lopez-Jimenez, Francisco ;
McKie, Paul M. ;
Ladewig, Dorothy J. ;
Satam, Gaurav ;
Pellikka, Patricia A. ;
Enriquez-Sarano, Maurice ;
Noseworthy, Peter A. ;
Munger, Thomas M. ;
Asirvatham, Samuel J. ;
Scott, Christopher G. ;
Carter, Rickey E. ;
Friedman, Paul A. .
NATURE MEDICINE, 2019, 25 (01) :70-+
[7]   Noninvasive assessment of dofetilide plasma concentration using a deep learning (neural network) analysis of the surface electrocardiogram: A proof of concept study [J].
Attia, Zachi, I ;
Sugrue, Alan ;
Asirvatham, Samuel J. ;
Ackerman, Michael J. ;
Kapa, Suraj ;
Friedman, Paul A. ;
Noseworthy, Peter A. .
PLOS ONE, 2018, 13 (08)
[8]   Erroneous Computer Electrocardiogram Interpretation of Atrial Fibrillation and Its Clinical Consequences [J].
Bae, Myung Hwan ;
Lee, Jang Hoon ;
Yang, Dong Heon ;
Park, Hun Sik ;
Cho, Yongkeun ;
Chae, Shung Chull ;
Jun, Jae-Eun .
CLINICAL CARDIOLOGY, 2012, 35 (06) :348-353
[9]   Protecting Your Patients' Interests in the Era of Big Data, Artificial Intelligence, and Predictive Analytics [J].
Balthazar, Patricia ;
Harri, Peter ;
Prater, Adam ;
Safdar, Nabile M. .
JOURNAL OF THE AMERICAN COLLEGE OF RADIOLOGY, 2018, 15 (03) :580-586
[10]   Comparison of Deep Learning Approaches for Multi-Label Chest X-Ray Classification [J].
Baltruschat, Ivo M. ;
Nickisch, Hannes ;
Grass, Michael ;
Knopp, Tobias ;
Saalbach, Axel .
SCIENTIFIC REPORTS, 2019, 9 (1)