AN IMPROVED LEARNING OF LOCAL SEARCH FOR FUZZY CONTROLLER NETWORK
被引:0
作者:
Vairappan, Catherine
论文数: 0引用数: 0
h-index: 0
机构:
Toyama Univ, Fac Engn, Toyama 9308555, JapanToyama Univ, Fac Engn, Toyama 9308555, Japan
Vairappan, Catherine
[1
]
Gao, Shangce
论文数: 0引用数: 0
h-index: 0
机构:
Toyama Univ, Fac Engn, Toyama 9308555, JapanToyama Univ, Fac Engn, Toyama 9308555, Japan
Gao, Shangce
[1
]
论文数: 引用数:
h-index:
机构:
Tamura, Hiroki
[2
]
Tang, Zheng
论文数: 0引用数: 0
h-index: 0
机构:
Toyama Univ, Fac Engn, Toyama 9308555, JapanToyama Univ, Fac Engn, Toyama 9308555, Japan
Tang, Zheng
[1
]
机构:
[1] Toyama Univ, Fac Engn, Toyama 9308555, Japan
[2] Miyazaki Univ, Fac Engn, Miyazaki 8892192, Japan
来源:
INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL
|
2009年
/
5卷
/
04期
关键词:
Fuzzy controller;
Local search;
Back propagation;
NEURAL-NETWORKS;
CONTROL-SYSTEMS;
IDENTIFICATION;
BACKPROPAGATION;
DESIGN;
MODEL;
D O I:
暂无
中图分类号:
TP18 [人工智能理论];
学科分类号:
081104 ;
0812 ;
0835 ;
1405 ;
摘要:
In this paper, we propose an improved version of local search learning for a fuzzy controller network. Local search learning has a reputation for fast, convergence and straightforward. However premature convergence makes it unsuitable for optimization problems. Comparison with temporal back propagation and canonical local search showed that the proposed method converges faster and is suitable for fuzzy controller problem.