GEVREY REGULARITY AND TIME DECAY OF THE FRACTIONAL DEBYE-HUCKEL SYSTEM IN FOURIER-BESOV SPACES

被引:4
作者
Cui, Yiwen [1 ]
Xiao, Weiliang [1 ]
机构
[1] Nanjing Univ Finance & Econ, Sch Appl Math, Nanjing 210023, Peoples R China
关键词
Debye-Huckel system; Gevrey regularity; time decay; Fourier-Besov spaces; DRIFT-DIFFUSION SYSTEM; WELL-POSEDNESS; CAUCHY-PROBLEM; ASYMPTOTIC-BEHAVIOR; CARRIER TRANSPORT; BASIC EQUATIONS; NERNST-PLANCK; EXISTENCE;
D O I
10.4134/BKMS.b191054
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we mainly study existence and regularity of mild solutions to the parabolic-elliptic system of drift-diffusion type with small initial data in Fourier-Besov spaces. To be more detailed, we will explain that global-in-time mild solutions are well-posed and Gevrey regular by means of multilinear singular integrals and Fourier localization argument. Furthermore, we can get time decay rate estimate of mild solutions in Fourier-Besov spaces.
引用
收藏
页码:1393 / 1408
页数:16
相关论文
共 22 条
[11]   Well-posedness for the drift-diffusion system in Lp arising from the semiconductor device simulation [J].
Kurokiba, Masaki ;
Ogawa, Takayoshi .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 342 (02) :1052-1067
[12]  
Lemarie-Rieusset P.G., 2002, RECENT DEV NAVIER ST, DOI DOI 10.1201/9781420035674
[13]   Poisson-Nernst-Planck Systems for Narrow Tubular-Like Membrane Channels [J].
Liu, Weishi ;
Wang, Bixiang .
JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2010, 22 (03) :413-437
[14]   One-dimensional steady-state Poisson-Nernst-Planck systems for ion channels with multiple ion species [J].
Liu, Weishi .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2009, 246 (01) :428-451
[15]  
Luo YW, 2010, APPL MATH E-NOTES, V10, P112
[16]   Well-posedness of the Cauchy problem for the fractional power dissipative equations [J].
Miao, Changxing ;
Yuan, Baoquan ;
Zhang, Bo .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 68 (03) :461-484
[17]   INITIAL VALUE-PROBLEM FROM SEMICONDUCTOR-DEVICE THEORY [J].
MOCK, MS .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1974, 5 (04) :597-612
[18]   ASYMPTOTIC BEHAVIOR OF SOLUTIONS TO DRIFT-DIFFUSION SYSTEM WITH GENERALIZED DISSIPATION [J].
Ogawa, Takayoshi ;
Yamamoto, Masakazu .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2009, 19 (06) :939-967
[19]  
Selberherr S., 2012, Analysis and simulation of semiconductor devices
[20]   Well-posedness of the Cauchy problem for the fractional power dissipative equation in critical Besov spaces [J].
Wu, Gang ;
Yuan, Ha .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 340 (02) :1326-1335