GEVREY REGULARITY AND TIME DECAY OF THE FRACTIONAL DEBYE-HUCKEL SYSTEM IN FOURIER-BESOV SPACES

被引:4
作者
Cui, Yiwen [1 ]
Xiao, Weiliang [1 ]
机构
[1] Nanjing Univ Finance & Econ, Sch Appl Math, Nanjing 210023, Peoples R China
关键词
Debye-Huckel system; Gevrey regularity; time decay; Fourier-Besov spaces; DRIFT-DIFFUSION SYSTEM; WELL-POSEDNESS; CAUCHY-PROBLEM; ASYMPTOTIC-BEHAVIOR; CARRIER TRANSPORT; BASIC EQUATIONS; NERNST-PLANCK; EXISTENCE;
D O I
10.4134/BKMS.b191054
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we mainly study existence and regularity of mild solutions to the parabolic-elliptic system of drift-diffusion type with small initial data in Fourier-Besov spaces. To be more detailed, we will explain that global-in-time mild solutions are well-posed and Gevrey regular by means of multilinear singular integrals and Fourier localization argument. Furthermore, we can get time decay rate estimate of mild solutions in Fourier-Besov spaces.
引用
收藏
页码:1393 / 1408
页数:16
相关论文
共 22 条
[1]   A note on the long time behavior for the drift-diffusion-Poisson system [J].
Ben Abdallah, N ;
Méhats, F ;
Vauchelet, N .
COMPTES RENDUS MATHEMATIQUE, 2004, 339 (10) :683-688
[2]   THE DEBYE SYSTEM - EXISTENCE AND LARGE TIME BEHAVIOR OF SOLUTIONS [J].
BILER, P ;
HEBISCH, W ;
NADZIEJA, T .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1994, 23 (09) :1189-1209
[3]   Long time behavior of solutions to Nernst-Planck and Debye-Huckel drift-diffusion systems [J].
Biler, P ;
Dolbeault, J .
ANNALES HENRI POINCARE, 2000, 1 (03) :461-472
[4]  
Chuesov I., 2004, MAT FIZ ANAL GEOM, V11, P226
[5]  
Ferrari AB, 1998, COMMUN PART DIFF EQ, V23, P1
[6]  
FOIAS C, 1979, J MATH PURE APPL, V58, P339
[7]   GEVREY CLASS REGULARITY FOR THE SOLUTIONS OF THE NAVIER-STOKES EQUATIONS [J].
FOIAS, C ;
TEMAM, R .
JOURNAL OF FUNCTIONAL ANALYSIS, 1989, 87 (02) :359-369
[8]   ON EXISTENCE, UNIQUENESS AND ASYMPTOTIC-BEHAVIOR OF SOLUTIONS OF THE BASIC EQUATIONS FOR CARRIER TRANSPORT IN SEMICONDUCTORS [J].
GAJEWSKI, H .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1985, 65 (02) :101-108
[9]   ON THE BASIC EQUATIONS FOR CARRIER TRANSPORT IN SEMICONDUCTORS [J].
GAJEWSKI, H ;
GROGER, K .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1986, 113 (01) :12-35
[10]   Scaling in nonlinear parabolic equations [J].
Karch, G .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1999, 234 (02) :534-558