An active set solver for input-constrained robust receding horizon control

被引:9
作者
Buerger, Johannes [1 ]
Cannon, Mark [1 ]
Kouvaritakis, Basil [1 ]
机构
[1] Univ Oxford, Dept Engn Sci, Oxford OX1 3PJ, England
关键词
Robust control; Control of constrained systems; Dynamic programming; Min-max optimal control; MODEL-PREDICTIVE CONTROL; TIME LINEAR-SYSTEMS; OPTIMIZATION; MPC;
D O I
10.1016/j.automatica.2013.09.032
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
An efficient optimization procedure is proposed for computing a receding horizon control law for linear systems with linearly constrained control inputs and additive disturbances. The procedure uses an active set approach to solve the dynamic programming problem associated with the min-max optimization of an H-infinity performance index. The active constraint set is determined at each sampling instant using first-order necessary conditions for optimality. The computational complexity of each iteration of the algorithm depends linearly on the prediction horizon length. We discuss convergence, closed loop stability and bounds on the disturbance l(2)-gain in closed loop operation. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:155 / 161
页数:7
相关论文
共 23 条
[1]   ON LINEAR-PROGRAMMING AND ROBUST MODEL-PREDICTIVE CONTROL USING IMPULSE-RESPONSES [J].
ALLWRIGHT, JC ;
PAPAVASILIOU, GC .
SYSTEMS & CONTROL LETTERS, 1992, 18 (02) :159-164
[2]  
[Anonymous], 2000, PRACTICAL METHODS OP
[3]  
[Anonymous], 1996, Applied Mathematics and Parallel Computing
[4]   Min-max control of constrained uncertain discrete-time linear systems [J].
Bemporad, A ;
Borrelli, F ;
Morari, M .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2003, 48 (09) :1600-1606
[5]  
Boyd S., 1994, STUDIES APPL MATH, V15
[6]  
Buerger J, 2011, IEEE DECIS CONTR P, P7931, DOI 10.1109/CDC.2011.6161409
[7]  
Campo P. J., 1987, Proceedings of the 1987 American Control Conference, P1021
[8]   Efficient MPC optimization using Pontryagin's minimum principle [J].
Cannon, Mark ;
Liao, Weiheng ;
Kouvaritakis, Basil .
INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2008, 18 (08) :831-844
[9]   Robust dynamic programming for min-max model predictive control of constrained uncertain systems [J].
Diehl, M ;
Björnberg, J .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2004, 49 (12) :2253-2257
[10]   An online active set strategy to overcome the limitations of explicit MPC [J].
Ferreau, H. J. ;
Bock, H. G. ;
Diehl, M. .
INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2008, 18 (08) :816-830