Measuring glacier surface temperatures with ground-based thermal infrared imaging

被引:48
作者
Aubry-Wake, Caroline [1 ]
Baraer, Michel [2 ]
McKenzie, Jeffrey M. [1 ]
Mark, Bryan G. [3 ,4 ]
Wigmore, Oliver [4 ]
Hellstroem, Robert A. [5 ]
Lautz, Laura [6 ]
Somers, Lauren [1 ]
机构
[1] McGill Univ, Dept Earth & Planetary Sci, Montreal, PQ, Canada
[2] Ecole Technol Super, Dept Genie Construct, Montreal, PQ, Canada
[3] Ohio State Univ, Byrd Polar Res Ctr, Columbus, OH 43210 USA
[4] Ohio State Univ, Dept Geog, Columbus, OH 43210 USA
[5] Bridgewater State Univ, Dept Geog, Bridgewater, MA USA
[6] Syracuse Univ, Dept Earth Sci, Syracuse, NY USA
基金
加拿大自然科学与工程研究理事会; 美国国家科学基金会;
关键词
Thermal imagery; infrared camera; temperature; glacier; energy budget; Peru; BALANCE; ENERGY; EMISSIVITY; MODEL; SNOW; MELT;
D O I
10.1002/2015GL065321
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Spatially distributed surface temperature is an important, yet difficult to observe, variable for physical glacier melt models. We utilize ground-based thermal infrared imagery to obtain spatially distributed surface temperature data for alpine glaciers. The infrared images are used to investigate thermal microscale processes at the glacier surface, such as the effect of surface cover type and the temperature gradient at the glacier margins on the glacier's temperature dynamics. Infrared images were collected at Cuchillacocha Glacier, Cordillera Blanca, Peru, on 23-25 June 2014. The infrared images were corrected based on ground truth points and local meteorological data. For the control points, the Pearson's correlation coefficient between infrared and station temperatures was 0.95. The ground-based infrared camera has the potential for greatly improving glacier energy budget studies, and our research shows that it is critical to properly correct the thermal images to produce robust, quantifiable data.
引用
收藏
页码:8489 / 8497
页数:9
相关论文
共 26 条
[1]   Glacier recession and water resources in Peru's Cordillera Blanca [J].
Baraer, Michel ;
Mark, Bryan G. ;
McKenzie, Jeffrey M. ;
Condom, Thomas ;
Bury, Jeffrey ;
Huh, Kyung-In ;
Portocarrero, Cesar ;
Gomez, Jesus ;
Rathay, Sarah .
JOURNAL OF GLACIOLOGY, 2012, 58 (207) :134-150
[2]   Toward hydro-social modeling: Merging human variables and the social sciences with climate-glacier runoff models (Santa River, Peru) [J].
Carey, Mark ;
Baraer, Michel ;
Mark, Bryan G. ;
French, Adam ;
Bury, Jeffrey ;
Young, Kenneth R. ;
McKenzie, Jeffrey M. .
JOURNAL OF HYDROLOGY, 2014, 518 :60-70
[3]   Ground-based thermal imaging of groundwater flow processes at the seepage face [J].
Deitchman, Richard S. ;
Loheide, Steven P., II .
GEOPHYSICAL RESEARCH LETTERS, 2009, 36
[4]   A distributed energy-balance melt model of an alpine debris-covered glacier [J].
Fyffe, Catriona L. ;
Reid, Tim D. ;
Brock, Ben W. ;
Kirkbride, Martin P. ;
Diolaiuti, Guglielmina ;
Smiraglia, Claudio ;
Diotri, Fabrizio .
JOURNAL OF GLACIOLOGY, 2014, 60 (221) :587-602
[5]   Modeling energy and mass balance of Shallap Glacier, Peru [J].
Gurgiser, W. ;
Marzeion, B. ;
Nicholson, L. ;
Ortner, M. ;
Kaser, G. .
CRYOSPHERE, 2013, 7 (06) :1787-1802
[6]  
Handcock R. N., 2012, Fluvial remote sensing for science and management, P85
[7]   Glacier melt: a review of processes and their modelling [J].
Hock, R .
PROGRESS IN PHYSICAL GEOGRAPHY-EARTH AND ENVIRONMENT, 2005, 29 (03) :362-391
[8]   In-situ measured spectral directional emissivity of snow and ice in the 8-14 μm atmospheric window [J].
Hori, M ;
Aoki, T ;
Tanikawa, T ;
Motoyoshi, H ;
Hachikubo, A ;
Sugiura, K ;
Yasunari, TJ ;
Eide, H ;
Storvold, R ;
Nakajima, Y ;
Takahashi, F .
REMOTE SENSING OF ENVIRONMENT, 2006, 100 (04) :486-502
[9]   The importance of observed gradients of air temperature and precipitation for modeling runoff from a glacierized watershed in the Nepalese Himalayas [J].
Immerzeel, W. W. ;
Petersen, L. ;
Ragettli, S. ;
Pellicciotti, F. .
WATER RESOURCES RESEARCH, 2014, 50 (03) :2212-2226
[10]  
Kaser G., 2002, TROPICAL GLACIERS