Semantic Segmentation using Generative Adversarial Network

被引:0
作者
Chen, Wenxin [1 ]
Zhang, Ting [1 ]
Zhao, Xing [1 ]
机构
[1] Beijing Inst Technol, Sch Automat, Beijing 100081, Peoples R China
来源
2021 PROCEEDINGS OF THE 40TH CHINESE CONTROL CONFERENCE (CCC) | 2021年
关键词
Deep Learning; Semantic Segmentation; Generative Adversarial Network; Patch Discriminant;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In the field of deep learning, semantic segmentation is a classical computer vision problem. Generative adversarial network is composed of generator and discriminator, which shows excellent performance in various generation tasks. In order to improve the segmentation effect of the model further, a generative adversarial network for semantic segmentation is proposed in this paper. By introducing the idea of patch discriminant, the model can achieve a balance between the global discriminant ability and the detail discriminant ability. Experiments in CamVid and Cityscapes datasets show that this model can effectively improve the accuracy of semantic segmentation.
引用
收藏
页码:8492 / 8495
页数:4
相关论文
共 19 条
[1]   Segmentation and Recognition Using Structure from Motion Point Clouds [J].
Brostow, Gabriel J. ;
Shotton, Jamie ;
Fauqueur, Julien ;
Cipolla, Roberto .
COMPUTER VISION - ECCV 2008, PT I, PROCEEDINGS, 2008, 5302 :44-+
[2]   Semantic object classes in video: A high-definition ground truth database [J].
Brostow, Gabriel J. ;
Fauqueur, Julien ;
Cipolla, Roberto .
PATTERN RECOGNITION LETTERS, 2009, 30 (02) :88-97
[3]   The Cityscapes Dataset for Semantic Urban Scene Understanding [J].
Cordts, Marius ;
Omran, Mohamed ;
Ramos, Sebastian ;
Rehfeld, Timo ;
Enzweiler, Markus ;
Benenson, Rodrigo ;
Franke, Uwe ;
Roth, Stefan ;
Schiele, Bernt .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :3213-3223
[4]   Rich feature hierarchies for accurate object detection and semantic segmentation [J].
Girshick, Ross ;
Donahue, Jeff ;
Darrell, Trevor ;
Malik, Jitendra .
2014 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2014, :580-587
[5]  
Goodfellow IJ, 2014, ADV NEUR IN, V27, P2672
[6]  
Ioffe S., 2015, INT C MACHINE LEARNI, P448
[7]   Image-to-Image Translation with Conditional Adversarial Networks [J].
Isola, Phillip ;
Zhu, Jun-Yan ;
Zhou, Tinghui ;
Efros, Alexei A. .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :5967-5976
[8]  
Karras T., 2018, P 6 INT C LEARN REPR
[9]   ImageNet Classification with Deep Convolutional Neural Networks [J].
Krizhevsky, Alex ;
Sutskever, Ilya ;
Hinton, Geoffrey E. .
COMMUNICATIONS OF THE ACM, 2017, 60 (06) :84-90
[10]  
Long J, 2015, PROC CVPR IEEE, P3431, DOI 10.1109/CVPR.2015.7298965