Modeling the wave propagation in viscoacoustic media: An efficient spectral approach in time and space domain

被引:8
作者
Shukla, Khemraj [1 ]
Carcione, Jose M. [2 ]
Pestana, Reynam C. [3 ]
Jaiswal, Priyank [1 ]
Ozdenvar, Turgut [4 ]
机构
[1] OSU, Boone Pickens Sch Geol, 105 Noble Res Ctr, Stillwater, OK 74078 USA
[2] Ist Nazl Oceanog & Geofis Sperimentale OGS, Borgo Grotta Gigante 42c, I-34010 Trieste, Sgonico, Italy
[3] Fed Univ Bahia UFBA, Dept Fis Terra & Meio Ambiente, Ctr Res Geophys & Geol CPGG, Salvador, BA, Brazil
[4] Wave Equat LLC, Cypress, TX 77433 USA
关键词
Fractional derivative; Attenuation; Wave propagation; Spectral methods; FINITE-DIFFERENCES; SIMULATION; MIGRATION; EQUATIONS;
D O I
10.1016/j.cageo.2019.01.022
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We present an efficient and accurate modeling approach for wave propagation in anelastic media, based on a fractional spatial differential operator. The problem is solved with the Fourier pseudo-spectral method in the spatial domain and the REM (rapid expansion method) in the time domain, which, unlike the finite-difference and pseudo-spectral methods, offers spectral accuracy. To show the accuracy of the scheme, an analytical solution in a homogeneous anelastic medium is computed and compared with the numerical solution. We present an example of wave propagation at a reservoir scale and show the efficiency of the algorithm against the conventional finite-difference scheme. The new method, being spectral in the time and space simultaneously, offers a highly accurate and efficient solution for wave propagation in attenuating media.
引用
收藏
页码:31 / 40
页数:10
相关论文
共 41 条
[1]  
Abramowitz M., 1972, Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables, Applied Mathematics Series, V55
[2]   ACCURACY OF FINITE-DIFFERENCE MODELING OF ACOUSTIC-WAVE EQUATION [J].
ALFORD, RM ;
KELLY, KR ;
BOORE, DM .
GEOPHYSICS, 1974, 39 (06) :834-842
[3]  
Bland D, 1960, The theory of linear viscoelasticity
[4]  
Caputo M., 1969, Elasticita e Dissipazione
[5]   WAVE SIMULATION IN BIOLOGIC MEDIA BASED ON THE KELVIN-VOIGT FRACTIONAL-DERIVATIVE STRESS-STRAIN RELATION [J].
Caputo, Michele ;
Carcione, Jose M. ;
Cavallini, Fabio .
ULTRASOUND IN MEDICINE AND BIOLOGY, 2011, 37 (06) :996-1004
[6]  
Carcione JM, 2007, HDB GEOPHYS EXPLOR I, V38, P1
[7]   Imaging septaria geobody in the Boom Clay using a Q-compensated reverse-time migration [J].
Carcione, J. M. ;
Zhu, T. ;
Picotti, S. ;
Gei, D. .
NETHERLANDS JOURNAL OF GEOSCIENCES-GEOLOGIE EN MIJNBOUW, 2016, 95 (03) :283-291
[8]   WAVE-PROPAGATION SIMULATION IN A LINEAR VISCOELASTIC MEDIUM [J].
CARCIONE, JM ;
KOSLOFF, D ;
KOSLOFF, R .
GEOPHYSICAL JOURNAL-OXFORD, 1988, 95 (03) :597-611
[9]   WAVE-PROPAGATION SIMULATION IN AN ELASTIC ANISOTROPIC (TRANSVERSELY ISOTROPIC) SOLID [J].
CARCIONE, JM ;
KOSLOFF, D ;
KOSLOFF, R .
QUARTERLY JOURNAL OF MECHANICS AND APPLIED MATHEMATICS, 1988, 41 :319-345
[10]   Time-domain modeling of constant-Q seismic waves using fractional derivatives [J].
Carcione, JM ;
Cavallini, F ;
Mainardi, F ;
Hanyga, A .
PURE AND APPLIED GEOPHYSICS, 2002, 159 (7-8) :1719-1736