Rough blowup solutions to the L2 critical NLS

被引:9
作者
Colliander, James [1 ]
Raphael, Pierre [2 ]
机构
[1] Univ Toronto, Dept Math, Toronto, ON M5S 2E4, Canada
[2] Univ Toulouse 3, Inst Math, F-31062 Toulouse, France
关键词
NONLINEAR SCHRODINGER-EQUATION; MASS CONCENTRATION; UP SOLUTIONS; CAUCHY-PROBLEM; GROUND-STATE; COMPACTNESS; STABILITY; EXISTENCE; PRINCIPLE;
D O I
10.1007/s00208-009-0355-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the singularity formation for the cubic focusing L-2-critical nonlinear Schrodinger equation on R-2. In a series of recent works, Merle and Raphael have completely described the so called log-log blowup regime and proven its stability in the energy space H-1. Our aim in this paper is to investigate the stability of this blowup regime under rough perturbations in the direction of developing a theory at the level of the critical space L-2. By blending the Merle, Raphael techniques with the quantitative I-method developed by Colliander, Keel, Staffilani, Takaoka and Tao for the study of the Cauchy problem for rough data, we obtain the stability of the log-log regime in H-s for all s > 0.
引用
收藏
页码:307 / 366
页数:60
相关论文
共 39 条
[1]   Mass concentration phenomena for the L2-critical nonlinear Schrodinger equation [J].
Begout, Pascal ;
Vargas, Ana .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 359 (11) :5257-5282
[2]  
BERESTYCKI H, 1983, ARCH RATION MECH AN, V82, P313
[3]  
Bourgain J, 1998, INT MATH RES NOTICES, V1998, P253
[4]   Global wellposedness of defocusing critical nonlinear Schrodinger equation in the radial case [J].
Bourgain, J .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 12 (01) :145-171
[5]  
BOURGAIN J., 1997, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), V25, P197
[6]   On the role of quadratic oscillations in nonlinear Schrodinger equations II.: The L2-critical case [J].
Carles, Remi ;
Keraani, Sahbi .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 359 (01) :33-62
[7]   THE CAUCHY-PROBLEM FOR THE CRITICAL NONLINEAR SCHRODINGER-EQUATION IN HS [J].
CAZENAVE, T ;
WEISSLER, FB .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1990, 14 (10) :807-836
[8]   DISPERSION OF SMALL AMPLITUDE SOLUTIONS OF THE GENERALIZED KORTEWEG-DEVRIES EQUATION [J].
CHRIST, FM ;
WEINSTEIN, MI .
JOURNAL OF FUNCTIONAL ANALYSIS, 1991, 100 (01) :87-109
[9]  
Coifman R., 1978, Ann. Inst. Fourier (Grenoble), V28, P177
[10]  
Coifman R., 1978, ANN I FOURIER, V28, pxi