TAUT REPRESENTATIONS OF COMPACT SIMPLE LIE GROUPS

被引:3
作者
Gorodski, Claudio [1 ]
机构
[1] Univ Sao Paulo, Inst Matemat & Estat, BR-05508090 Sao Paulo, Brazil
基金
巴西圣保罗研究基金会;
关键词
D O I
10.1215/ijm/1242414124
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The concept of taut submanifold of Euclidean space is due to Carter and West, and can be traced back to the work of Chern and Lashof on immersions with minimal total absolute curvature and the subsequent reformulation of that work by Kuiper in terms of critical point theory. In this paper, we classify the reducible representations of compact simple Lie groups, all of whose orbits are tautly embedded in Euclidean space, with respect to Z(2)-coefficients.
引用
收藏
页码:121 / 143
页数:23
相关论文
共 40 条
[1]  
BANCHOFF T, 1970, J DIFFER GEOM, V4, P193
[2]   NONDEGENERATE CRITICAL MANIFOLDS [J].
BOTT, R .
ANNALS OF MATHEMATICS, 1954, 60 (02) :248-261
[3]   CORRECTION TO APPLICATIONS OF THEORY OF MORSE TO SYMMETRIC SPACES [J].
BOTT, R ;
SAMELSON, H .
AMERICAN JOURNAL OF MATHEMATICS, 1961, 83 (01) :207-&
[4]  
CARTER S, 1972, P LOND MATH SOC, V25, P701
[5]  
CECIL T, 1997, MATH SCI RES I PUBL, V32, P135
[6]  
CECIL TE, 1978, MATH ANN, V236, P177, DOI 10.1007/BF01351390
[7]  
CECIL TE, 1985, RES NOTES MATH, V107
[8]  
CHAVES LM, 1998, NOTE MAT, V18, P155
[9]   ON THE TOTAL CURVATURE OF IMMERSED MANIFOLDS [J].
CHERN, SS ;
LASHOF, RK .
AMERICAN JOURNAL OF MATHEMATICS, 1957, 79 (02) :306-318
[10]   On the classification of polar representations [J].
Eschenburg, JH ;
Heintze, E .
MATHEMATISCHE ZEITSCHRIFT, 1999, 232 (03) :391-398