Torus equivariant D-modules and hypergeometric systems

被引:3
作者
Berkesch, Christine [1 ]
Matusevich, Laura Felicia [2 ]
Walther, Uli [3 ]
机构
[1] Univ Minnesota, Sch Math, Minneapolis, MN 55455 USA
[2] Texas A&M Univ, Dept Math, College Stn, TX 77843 USA
[3] Purdue Univ, Dept Math, W Lafayette, IN 47907 USA
基金
美国国家科学基金会;
关键词
D-modules; Torus equivariant; Hypergeometric equations; GKZ; Horn system; MONODROMY; SERIES;
D O I
10.1016/j.aim.2019.04.050
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We formalize, at the level of D-modules, the notion that A-hypergeometric systems are equivariant versions of the classical hypergeometric equations. For this purpose, we construct a functor Pi((A) over bar)(B) on a suitable category of torus equivariant D-modules and show that it preserves key properties, such as holonomicity, regularity, and reducibility of monodromy representation. We also examine its effect on solutions, characteristic varieties, and singular loci. By applying Pi((A) over bar)(B) to suitable binomial D-modules, we shed new light on the D-module theoretic properties of systems of classical hypergeometric differential equations. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:1226 / 1266
页数:41
相关论文
共 30 条
  • [1] HYPERGEOMETRIC-FUNCTIONS AND RINGS GENERATED BY MONOMIALS
    ADOLPHSON, A
    [J]. DUKE MATHEMATICAL JOURNAL, 1994, 73 (02) : 269 - 290
  • [2] [Anonymous], 1987, PERSPECTIVES MATH
  • [3] Berkesch C., 2018, ARXIV180603355
  • [4] Berkesch C., 2010, THESIS
  • [5] A-graded methods for monomial ideals
    Berkesch, Christine
    Matusevich, Laura Felicia
    [J]. JOURNAL OF ALGEBRA, 2009, 322 (08) : 2886 - 2904
  • [6] Bernstein J., 1972, Funct. Anal. Appl, V6, P273, DOI [10.1007/BF01077645, DOI 10.1007/BF01077645]
  • [7] Irreducibility of A-hypergeometric systems
    Beukers, F.
    [J]. INDAGATIONES MATHEMATICAE-NEW SERIES, 2011, 21 (1-2): : 30 - 39
  • [8] MONODROMY FOR THE HYPERGEOMETRIC FUNCTION NFN-1
    BEUKERS, F
    HECKMAN, G
    [J]. INVENTIONES MATHEMATICAE, 1989, 95 (02) : 325 - 354
  • [9] Bivariate hypergeometric D-modules
    Dickenstein, A
    Matusevich, LF
    Sadykov, T
    [J]. ADVANCES IN MATHEMATICS, 2005, 196 (01) : 78 - 123
  • [10] Nilsson solutions for irregular A-hypergeometric systems
    Dickenstein, Alicia
    Martinez, Federico N.
    Matusevich, Laura Felicia
    [J]. REVISTA MATEMATICA IBEROAMERICANA, 2012, 28 (03) : 723 - 758