Jacobian nullwerte and algebraic equations

被引:12
作者
Guàrdia, J [1 ]
机构
[1] Escola Univ Politecn Vilanova Geltru, E-08800 Vilanova I La Geltru, Spain
关键词
algebraic equations; theta functions;
D O I
10.1016/S0021-8693(02)00049-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present two applications of jacobian nullwerte, both related with the resolution of algebraic equations of any degree. We give a very simple expression of the roots of a polynomial of arbitrary degree in terms of derivatives of hyperelliptic theta functions. This expression can be understood as an explicit proof of Torelli's theorem in the hyperelliptic case. We also give geometrical expressions of the discriminant of a polynomial. Both applications are based on a jacobian version of Thomae's formula. (C) 2002 Elsevier Science (USA). All rights reserved.
引用
收藏
页码:112 / 132
页数:21
相关论文
共 13 条
[1]  
Arbarello E., 1985, GRUNDLEHREN MATH WIS, V267
[2]  
Birkenhake C., 1992, GRUNDLEHREN MATH WIS, V302
[3]  
FROBENIUS FG, 1885, J REINE ANGEW MATH, V98, P241
[4]  
GRANT D, 1988, J REINE ANGEW MATH, V392, P125
[5]   ON JACOBI DERIVATIVE FORMULA AND ITS GENERALIZATIONS [J].
IGUSA, J .
AMERICAN JOURNAL OF MATHEMATICS, 1980, 102 (02) :409-446
[6]  
IGUSA JI, 1979, S MATH, V24, P83
[7]   ON THE DISCRIMINANT OF A HYPERELLIPTIC CURVE [J].
LOCKHART, P .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1994, 342 (02) :729-752
[8]  
Mumford D., 1983, Progr. Math., V28
[9]  
Mumford D., 1984, PROGR MATH, V43
[10]  
RIEMANN B, 1953, GESAMMELTEN MATH WER