Coercive field and energy barriers in partially disordered FePt nanoparticles

被引:5
作者
Aranda, G. R. [1 ]
Chubykalo-Fesenko, O. [2 ]
Yanes, R. [2 ]
Gonzalez, J. [3 ]
del Val, J. J. [1 ,3 ]
Chantrell, R. W. [4 ]
Takahashi, Y. K. [5 ]
Hono, K. [5 ]
机构
[1] Ctr Mixto CSIC Univ Basque Country, Unidad Fis Mat, San Sebastian 20018, Gipuzkoa, Spain
[2] CSIC, Inst Ciencia Mat Madrid, E-28049 Madrid, Spain
[3] Univ Basque Country, Fac Quim, Dpto Fis Mat, San Sebastian 20018, Gipuzkoa, Spain
[4] Univ York, Dept Phys, York YO10 5DD, N Yorkshire, England
[5] Natl Inst Mat Sci, Tsukuba, Ibaraki 3050047, Japan
关键词
MAGNETIC RECORDING MEDIA;
D O I
10.1063/1.3067570
中图分类号
O59 [应用物理学];
学科分类号
摘要
Partially disordered FePt nanoparticles prepared by the sputtering method and protected by Al2O3 constitute an interesting realization of graded media, recently suggested for future generations of magnetic recording. By depositing the alumina layer, the particle is partially disordered with gradually varying properties. The current work comprises a comparison between experimental data and atomistic modeling results of the coercive field and energy barriers in FePt particles with gradually spatially varying properties, specifically the magnetization, anisotropy, and exchange constants. From our modeling we conclude that the magnetization reversal processes for dynamic reversal at the coercive field and for the zero field energy barrier involve different reversal modes. The coercive field decreases as a function of disordering length up to 2 T and is in good agreement with measured values. The zero field energy barrier, except for highly disordered particles, is almost independent of the disordering length, retaining the high values required for thermal stability. (C) 2009 American Institute of Physics. [DOI: 10.1063/1.3067570]
引用
收藏
页数:3
相关论文
共 9 条
[1]   Recording simulations on graded media for area densities of up to 1 Tbit/in.2 [J].
Goncharov, A. ;
Schrefl, T. ;
Hrkac, G. ;
Dean, J. ;
Bance, S. ;
Suess, D. ;
Ertl, O. ;
Dorfbauer, F. ;
Fidler, J. .
APPLIED PHYSICS LETTERS, 2007, 91 (22)
[2]   Magnetization reversal via perpendicular exchange spring in FePt/FeRh bilayer films [J].
Guslienko, KY ;
Chubykalo-Fesenko, O ;
Mryasov, O ;
Chantrell, R ;
Weller, D .
PHYSICAL REVIEW B, 2004, 70 (10) :104405-1
[3]   Temperature-dependent magnetic properties of FePt: Effective spin Hamiltonian model [J].
Mryasov, ON ;
Nowak, U ;
Guslienko, KY ;
Chantrell, RW .
EUROPHYSICS LETTERS, 2005, 69 (05) :805-811
[4]   Numerical evaluation of energy barriers in nano-sized magnetic elements with Lagrange multiplier technique [J].
Paz, E. ;
Garcia-Sanchez, F. ;
Chubykalo-Fesenko, O. .
PHYSICA B-CONDENSED MATTER, 2008, 403 (2-3) :330-333
[5]   TIME-DEPENDENCE OF SWITCHING FIELDS IN MAGNETIC RECORDING MEDIA (INVITED) [J].
SHARROCK, MP .
JOURNAL OF APPLIED PHYSICS, 1994, 76 (10) :6413-6418
[6]   Multilayer exchange spring media for magnetic recording [J].
Suess, D. .
APPLIED PHYSICS LETTERS, 2006, 89 (11)
[7]   Magnetization reversal of FePt hard/soft stacked nanocomposite particle assembly [J].
Takahashi, Y. K. ;
Hono, K. ;
Okamoto, S. ;
Kitakami, O. .
JOURNAL OF APPLIED PHYSICS, 2006, 100 (07)
[8]   Interfacial disorder in the L10 FePt particles capped with amorphous Al2O3 [J].
Takahashi, YK ;
Hono, K .
APPLIED PHYSICS LETTERS, 2004, 84 (03) :383-385
[9]   FeRh/FePt exchange spring films for thermally assisted magnetic recording media [J].
Thiele, JU ;
Maat, S ;
Fullerton, EE .
APPLIED PHYSICS LETTERS, 2003, 82 (17) :2859-2861